模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2015, Vol. 28 Issue (10): 922-929    DOI: 10.16451/j.cnki.issn1003-6059.201510007
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
改进的多类不平衡数据关联分类算法*
黄再祥,周忠眉,何田中,郑艺峰
闽南师范大学 计算机学院 漳州 363000
Improved Associative Classification Algorithm for Multiclass Imbalanced Datasets
HUANG Zai-Xiang, ZHOU Zhong-Mei, HE Tian-Zhong, Zheng Yi-Feng
School of Computer Science, Minnan Normal University, Zhangzhou 363000

全文: PDF (438 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 由于多类不平衡数据中某些类别的样例数特别少,使得基于支持度-置信度的关联分类方法在这些类上产生的规则较少,甚至没有,从而导致这些类别的样例很难准确分类.针对此问题,文中提出改进的多类不平衡数据关联分类算法.为了提取更多小类的规则,根据项集与类别的正相关度提取规则.为了提高小类规则的优先级,提出利用项集类分布规则强度排序规则.此外,为解决规则冲突或无规则匹配问题,结合KNN分类新样例.实验表明,与基于支持度-置信度的关联分类方法相比,文中算法能提取更多的小类规则,且提高小类规则的优先级,在多类不平衡数据上取得较高的G-mean值和F-score值.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:Instances in some classes are rare in multiclass imbalanced datasets and therefore few rules for these classes are generated by support-confidence based associative classification algorithms. Consequently, instances in these minority classes are difficult to be correctly classified. Aiming at this problem, an improved associative classification algorithm for multiclass imbalanced datasets is proposed. To extract more rules for minority classes, rules are extracted according to positive correlation between itemsets and classes. Then, to improve the priority of minority classes rules, the rule strength based on itemsets class distribution is designed to rank rules. Finally, to address problems of no matched rules or matched rules in conflict, a k nearest neighbor algorithm is incorporated into the improved associative classification to classify new instances. Experimental results show that the proposed algorithm extracts more minority classes rules and promotes the priority of the minority classes rules compared with support-confidence based associative classification, and thus G-mean and F-score value for multiclass imbalance datasets are improved.
收稿日期: 2014-11-07     
ZTFLH: TP 311.13  
基金资助:国家自然科学基金项目(No.61170129)、福建省自然科学基金项目(No.2013J01259)、福建省中青年教师教育科研项目(No.JA15303)资助
作者简介: 黄再祥(通讯作者),男,1975年生,硕士,讲师,主要研究方向为数据挖掘、机器学习.E-mail:huangzaixiang@126.com.周忠眉,女,1965年生,博士,教授,主要研究方向为数据挖掘、人工智能.何田中,男,1970年生,硕士,讲师,主要研究方向为数据挖掘.郑艺峰,男,1980年生,讲师,主要研究方向为数据挖掘.
引用本文:   
黄再祥,周忠眉,何田中,郑艺峰. 改进的多类不平衡数据关联分类算法*[J]. 模式识别与人工智能, 2015, 28(10): 922-929. HUANG Zai-Xiang, ZHOU Zhong-Mei, HE Tian-Zhong, Zheng Yi-Feng. Improved Associative Classification Algorithm for Multiclass Imbalanced Datasets. , 2015, 28(10): 922-929.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201510007      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2015/V28/I10/922
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn