模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2017, Vol. 30 Issue (4): 343-352    DOI: 10.16451/j.cnki.issn1003-6059.201704006
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于深度自编码器的单样本人脸识别*
张彦1,2, 彭华1
1. 中国人民解放军信息工程大学 信息系统工程学院 郑州450000
2.郑州轻工业学院 计算机与通信工程学院 郑州 450002
One Sample per Person Face Recognition Based on Deep Autoencoder
ZHANG Yan, PENG Hua
1.School of Information Systems Engineering, Information Engineering University, Zhengzhou 450000
2.School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002

全文: PDF (962 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 由于每个目标仅有一幅已知样本,无法描述目标的类内变化,诸多人脸识别算法在解决单样本人脸识别问题时识别性能较低.因此文中提出基于深度自编码器的单样本人脸识别算法.算法首先采用所有已知样本训练深度自编码器,得到广义深度自编码器,然后使用每个单样本目标的单个样本微调广义深度自编码器,得到特定类别的深度自编码器.识别时,将识别图像输入每个特定类别的深度自编码器,得到包含与测试图像相同类内变化的该类别的重构图像,使用重构图像训练Softmax回归模型,分类测试图像.在公共测试库上进行测试,并与其它算法在相同环境下进行对比,结果表明文中算法在获得更优识别率的同时,识别一幅图像所需平均时间更少.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张彦
彭华
关键词 单样本人脸识别 深度自编码器 样本重构    
Abstract:Since there is only one sample for each subject, it is hard to describe intra-class variations of the subject. The performance of state-of-the-art face recognition algorithms declines in one sample per person(OSPP) face recognition. In this paper, an OSPP face recognition algorithm based on deep autoencoder(OSPP-DA) is proposed. In OSPP-DA, deep autoencoder is trained by all the images in the gallery firstly, and a generalized deep autoencoder(GDA) is generated. Then, the GDA is fine-tuned by the single sample of the subject, and a class-specified deep autoencoder(CDA) is obtained. For classification, query images are input to CDAs and the reconstruction samples of the corresponding subjects have the same intra-class variation as query images. A Softmax regression model is trained by the reconstruction samples and the query images are identified by the Softmax regression model. Experiments on public testing database are conducted and the results show the validity of OSPP-DA. Compared with some state-of-the-art algorithms, the proposed algorithm produces better performance with less time.
Key wordsOne Sample per Person Face Recognition    Deep Autoencoder    Sample Reconstruction   
    
ZTFLH: TP 391.4  
基金资助:河南省教育厅科学技术研究重点项目(No.12A510027)资助
作者简介: 张 彦,女,1975年生,博士研究生,讲师,主要研究方向为图像处理、模式识别.E-mail: miaomiao9323@163.com.
彭 华(通讯作者),男,1973年生,博士,教授,主要研究方向为软件无线电、通信信号处理.E-mail:pengh139@139.com.
引用本文:   
张彦, 彭华. 基于深度自编码器的单样本人脸识别*[J]. 模式识别与人工智能, 2017, 30(4): 343-352. ZHANG Yan, PENG Hua. One Sample per Person Face Recognition Based on Deep Autoencoder. , 2017, 30(4): 343-352.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201704006      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2017/V30/I4/343
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn