[1] TSAI C F, HUANG S C. An Effective and Efficient Grid-Based Data Clustering Algorithm Using Intuitive Neighbor Relationship for Data Mining // Proc of the International Conference on Machine Learning and Cybernetics. Washington, USA: IEEE, 2015: 478-483.
[2] PENG X, TANG H J, ZHANG L, et al. A Unified Framework for Representation-Based Subspace Clustering of Out-of-Sample and Large-Scale Data. IEEE Transactions on Neural Networks and Lear-ning Systems, 2016, 27(12): 2499-2512.
[3] SHARMA V K, BALA A. Clustering for High Dimensional Data // Proc of the 1st International Conference on Networks and Soft Computing. Washington, USA: IEEE, 2014: 365-369.
[4] HU H, LIN Z C, FENG J J, et al. Smooth Representation Clus-tering // Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 3834-3841.
[5] 刘展杰,陈晓云.局部子空间聚类.自动化学报, 2016, 42(8): 1238-1247.
(LIU Z J, CHEN X Y. Local Subspace Clustering. Acta Automatica Sinica, 2016, 42(8): 1238-1247.)
[6] 王卫卫,李小平,冯象初,等.稀疏子空间聚类综述.自动化学报, 2015, 41(8): 1373-1384.
(WANG W W, LI X P, FENG X C, et al. A Survey on Sparse Subspace Clustering. Acta Automatica Sinica, 2015, 41(8): 1373-1384.)
[7] ELHAMIFAR E, VIDAL R. Sparse Subspace Clustering: Algorithm, Theory, and Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781.
[8] LU C Y, MIN H, ZHAO Z Q, et al. Robust and Efficient Subspace Segmentation via Least Squares Regression // Proc of the 12th European Conference on Computer Vision. Berlin, Germany: Springer, 2012: 347-360.
[9] LIU G C, LIN Z C, YU Y. Robust Subspace Segmentation by Low-Rank Representation // Proc of the 27th International Conference on Machine Leaning. New York, USA: ACM, 2010: 663-670.
[10] 傅文进,吴小俊.基于l2范数的加权低秩子空间聚类.软件学报, 2017. DOI: 10.13328/j.cnki.jos.005235.
(FU W J, WU X J. Weighted Low Rank Subspace Clustering Based on l2 Norm. Journal of Software, 2017. DOI: 10.13328/j.cnki.jos.005235.)
[11] 张 涛,唐振民,吕建勇.一种基于低秩表示的子空间聚类改进算法.电子与信息学报, 2016, 38(11): 2811-2818.
(ZHANG T, TANG Z M, LÜ J Y. Improved Algorithm Based on Low Rank Representation for Subspace Clustering. Journal of Electronics & Information Technology, 2016, 38(11): 2811-2818.)
[12] XU J, XU K, CHEN K, et al.Reweighted Sparse Subspace Clus-tering. Computer Vision and Image Understanding, 2015, 138: 25-37.
[13] PATEL V M, VAN NGUYEN H, VIDAL R, et al. Latent Space Sparse and Low-Rank Subspace Clustering. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(4): 691-701.
[14] 李 辉,陈晓云.基于最小二乘回归的分块加权子空间聚类.模式识别与人工智能, 2016, 29(12): 1114-1121.
(LI H, CHEN X Y. Weighted Block Subspace Clustering Based on Least Square Regression. Pattern Recognition and Artificial Intelligence, 2016, 29(12): 1114-1121.)
[15] BAADEL S, THABTAH F, LU J. Overlapping Clustering: A Review // Proc of the IEEE Conference on SAI Computing Confe-rence. Washington, USA: IEEE, 2016: 233-237.
[16] BANERJEE A, KRUMPELMAN C, GHOSH J, et al. Model-Based Overlapping Clustering // Proc of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York, USA: ACM, 2005: 532-537.
[17] TANG Y Y, YUAN H L, LI L Q. Manifold-Based Sparse Representation for Hyperspectral Image Classification. IEEE Transaction on Geoscience and Remote Sensing, 2014, 52(12): 7606-7618.
[18] SHI J B, MALIK J. Normalized Cuts and Image Segmentation. IEEE
Transaction on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
[19] FU Q, BANERJEE A. Multiplicative Mixture Models for Overla-pping Clustering // Proc of the 8th IEEE International Conference on Data Mining. Washington, USA: IEEE, 2008: 791-796.
[20] 邱云飞,费博雯,刘大千.基于概率模型的重叠子空间聚类算法.模式识别与人工智能, 2017, 30(7): 609-621.
(QIU Y F, FEI B W, LIU D Q. Overlapping Subspace Clustering Based on Probabilistic Model. Pattern Recognition and Artificial Intelligence, 2017, 30(7): 609-621.)
[21] CAI D, HE X F, WU X Y, et al. Non-negative Matrix Factorization on Manifold // Proc of the 8th IEEE International Conference on Data Mining. Washington, USA: IEEE, 2008: 63-72.
[22] 邓赵红,张丹丹,蒋亦樟,等.基于划分自适应融合的多视角模糊聚类算法.控制与决策, 2016, 31(4): 593-600.
(DENG Z H, ZHANG D D, JIANG Y Z, et al. Multi-view Fuzzy Clustering Algorithm Based on Partition Adaptive-Fusion. Control and Decision, 2016, 31(4): 593-600.)
[23] AGGARWAL C C, WOLF J L, YU P S, et al. Fast Algorithms for Projected Clustering // Proc of the ACM SIGKDD International Conference on Management of Data. New York, USA: ACM, 1999: 61-72. |