[1] BOSER B E, GUYON I M, VAPNIK V N. A Training Algorithm for Optimal Margin Classifiers // Proc of the 5th Annual Workshop on Computational Learning Theory. New York, USA: ACM, 1992: 144-152.
[2] LANCKRIET G R G, CRISTIANINI N, BARTLETT P, et al. Learning the Kernel Matrix with Semidefinite Programming. Journal of Machine Learning Research, 2004, 5: 27-72.
[3] BACH F R, LANCKRIET G R G, JORDAN M I. Multiple Kernel Learning, Conic Duality, and the SMO Algorithm // Proc of the 21st International Conference on Machine Learning. New York, USA: ACM, 2004: 41-48.
[4] SONNENBURG S, RATSCH G, SCHAFER C, et al. Large Scale Multiple Kernel Learning. Journal of Machine Learning Research, 2006, 7: 1531-1565.
[5] SONNENBURG S, RATSCH G, SCHAFER C. A General and Efficient Multiple Kernel Learning Algorithm // WEISS Y, SCHLKO-
PF B, PLATT J C, eds. Advances in Neural Information Processing Systems 18. Cambridge, USA: The MIT Press, 2005: 1273-1280.
[6] RAKOTOMAMONJY A, BACH F, CANU S, et al. SimpleMKL. Journal of Machine Learning Research, 2008, 9: 2491-2521.
[7] 孙 涛,冯 婕.快速随机多核学习分类算法.西安电子科技大学学报(自然科学版), 2016, 43(1): 36-40.
(SUN T, FENG J. Fast Random Multiple Kernel Learning for Cla-ssification. Journal of Xidian University(Natural Science Edition), 2016, 43(1): 36-40.)
[8] LI X D, MAO W J, JIANG W. Multiple-Kernel-Learning-Based Extreme Learning Machine for Classification Design. Neural Computing & Applications, 2016, 27(1): 175-184.
[9] 梁 军,李世浩,张飞云,等.基于半无限规划的弹性多核学习算法.华中科技大学学报(自然科学版), 2015, 43(8): 103-106.
(LIANG J, LI S H, ZHANG F Y, et al. Flexible Multi-core Lear-ning Algorithm Based on Semi-Infinite Programming. Journal of Huazhong University of Science & Technology(Natural Science Edition), 2015, 43(8): 103-106.)
[10] 张仁峰,吴小俊,陈素根.通用稀疏多核学习.计算机应用研究, 2016, 33(1): 21-27.
(ZHANG R F, WU X J, CHEN S G. General Sparse Multiple Kernel Learning. Application Research of Computers, 2016, 33(1): 21-27.)
[11] 刘 宁,赵建华,冯骜骜.基于主动学习的有监督在线多核学习算法.河南科学, 2016, 34(9): 1423-1427.
(LIU N, ZHAO J H, FENG A A. A Supervised Online Multiple Kernel Learning Algorithm Based on Active Learning. Henan Science, 2016, 34(9): 1423-1427.)
[12] WANG X M, HUANG Z X, DU Y J. Improving Localized Multiple Kernel Learning via Radius-Margin Bound[J/OL]. [2017-07-25]. https://doi.org/10.1156/2017/4579214.
[13] FAN Q, WANG Z, ZHA H Y, et al. MREKLM: A Fast Multiple Empirical Kernel Learning Machine. Pattern Recognition, 2017, 61: 197-209.
[14] BUCAK S, JIN R, JAIN A K. Multi-label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition // LAFFERTY J D, WILLIAMS C K I, SHAWE-TAYLOR J, et al., eds. Advances in Neural Information Processing Systems 23. Cambridge, USA: The MIT Press, 2010: 325-333.
[15] EFRON B, HASTIE T, JOHNSTONE I, et al. Least Angle Regression. The Annals of Statistics, 2004, 32(2): 407-499.
[16] HASTIE T, ROSSET S, TIBSHIRANI R, et al. The Entire Regularization Path for the Support Vector Machine. Journal of Machine Learning Research, 2004, 5: 1391-1415.
[17] GUNTER L, ZHU J. Efficient Computation and Model Selection for the Support Vector Regression. Neural Computation, 2007, 19(6): 1633-1655.
[18] ROSSET S, ZHU J. Piecewise Linear Regularized Solution Paths. The Annals of Statistics, 2007, 35(3): 1012-1030.
[19] KARASUYAMA M, TAKEUCHI I. Suboptimal Solution Path Algorithm for Support Vector Machine // Proc of the 28th International Conference on Machine Learning. New York, USA: Omnipress, 2011: 473-480.
[20] ONG C J, SHAO S Y, YANG J B. An Improved Algorithm for the Solution of the Regularization Path of Support Vector Machine. IEEE Transactions on Neural Networks, 2010, 21(3): 451-462.
[21] 廖士中,王 梅,赵志辉.正定矩阵支持向量机正则化路径算法.计算机研究与发展, 2013, 50(11): 2253-2261.
(LIAO S Z, WANG M, ZHAO Z H. Regularization Path Algorithm of SVM via Positive Definite Matrix. Journal of Computer Research and Development, 2013, 50(11): 2253-2261.)
[22] DRINEAS P, KANNAN R. Fast Monte-Carlo Algorithms for Approximate Matrix Multiplication // Proc of the 42nd IEEE Symposium on Foundations of Computer Science. Washington, USA: IEEE, 2001: 452-459.
[23] DRINEAS P, KANNAN R, MAHONEY M W. Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication. SIAM Journal on Computing, 2006, 36(1): 132-157.
[24] ERIKSSON-BIQUE S, SOLBRIG M, STEFANELLI M, et al. Importance Sampling for a Monte Carlo Matrix Multiplication Algorithm, with Application to Information Retrieval. SIAM Journal on Scientific Computing, 2011, 33(4): 1689-1706.
[25] MADRID H, GUERRA V, ROJAS M. Sampling Techniques for Monte Carlo Matrix Multiplication with Applications to Image Processing // Proc of the Mexican Conference on Pattern Recognition. Berlin, Germany: Springer, 2012: 45-54. |