Abstract:Label correlations, noises and corruptions are ignored in label distribution learning algorithms. Aiming at this problem, a label distribution learning method based on low-rank representation(LDL-LRR)is proposed. The base of the feature space is leveraged to represent the sample information, and consequently dimensionality reduction of the data in the original feature space is achieved. To capture the global structure of the data, low-rank representation is transferred to the label space to impose low-rank constraint to the model. Augmented Lagrange method and quasi-Newton method are employed to solve the LRR and objective function, respectively. Finally, the label distribution is predicted by the maximum entropy model. Experiments on 10 datasets show that LDL-LRR produces good performance and stable effect.
刘睿馨, 刘新媛, 李晨. 基于低秩表示的标记分布学习算法[J]. 模式识别与人工智能, 2021, 34(2): 146-156.
LIU Ruixin, LIU Xinyuan, LI Chen. Label Distribution Learning Method Based on Low-Rank Representation. , 2021, 34(2): 146-156.
[1] XU N, LIU Y P, GENG X. Label Enhancement for Label Distribution Learning[J/OL]. [2020-07-26]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8868206. [2] GENG X. Label Distribution Learning. IEEE Transactions on Know-ledge and Data Engineering, 2016, 28(7): 1734-1748. [3] GENG X, SMITHMILES K, ZHOU Z H. Facial Age Estimation by Learning from Label Distributions[C/OL]. [2020-07-26]. https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/aaai10LLD.pdf. [4] GENG X, YIN C, ZHOU Z H. Facial Age Estimation by Learning from Label Distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(10): 2401-2412. [5] ZHOU Y, XUE H, GENG X. Emotion Distribution Recognition from Facial Expressions // Proc of the 23rd ACM International Conference on Multimedia. New York, USA: ACM, 2015: 1247-1250. [6] LING M G, GENG X. Soft Video Parsing by Label Distribution Learning. Frontiers of Computer Science, 2019, 13(2): 302-317. [7] XU M, ZHOU Z H. Incomplete Label Distribution Learning // Proc of the 26th International Conference on Artificial Intelligence. New York, USA: ACM, 2017: 3175-3181. [8] JIA X Y, LI W W, LIU J Y, et al. Label Distribution Learning by Exploiting Label Correlations // Proc of the 32 AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2018: 3310-3317. [9] ZHENG X, JIA X Y, LI W W. Label Distribution Learning by Exploiting Sample Correlations Locally // Proc of the 32 AAAI Confe-rence on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2018: 4556-4563. [10] LIU G C, LIN Z C, YU Y. Robust Subspace Segmentation by Low-Rank Representation // Proc of the 26th International Conference on Machine Learning. New York, USA: ACM, 2010: 663-670. [11] LIU G C, LIN Z C, YAN S C, et al. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pa-ttern Analysis and Machine Intelligence, 2013, 35(1): 171-184. [12] 李 骜,刘 鑫,陈德运,等.基于低秩表示的鲁棒判别特征子空间学习模型.电子与信息学报, 2020, 42(5): 1223-1230. (LI A, LIU X, CHEN D Y, et al. Robust Discriminative Feature Subspace Learning Based on Low Rank Representation. Journal of Electronics and Information Technology, 2020, 42(5): 1223-1230.) [13] 耿 新,徐 宁.标记分布学习与标记增强.中国科学(信息科学), 2018, 48(5): 521-530. (GENG X, XU N. Label Distribution Learning and Label Enhancement. Scientia Sinica(Informationis), 2018, 48(5): 521-530.) [14] BERGER A L, DELLA PIETRA V J, DELLA PIETRA S A. A Maximum Entropy Approach to Natural Language Processing. Computational Linguistics, 1996, 22(1): 39-71. [15] YANG X, GAO B B, XING C, et al. Deep Label Distribution Learning for Apparent Age Estimation // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 102-108. [16] DELLA PIETRA S, DELLA PIETRA V, LAFFERTY J. Inducing Features of Random Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(4): 380-393. [17] NOCEDAL J, WRIGHT S J. Numerical Optimization. Berlin, Ger-many: Springer, 2006. [18] KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An Efficient k-means Clustering Algorithm: Analysis and Implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892. [19] REN T T, JIA X Y, LI W W, et al. Label Distribution Learning with Label Correlations via Low-Rank Approximation // Proc of the 28th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 3325-3331. [20] 王卫卫,李小平,冯象初,等.稀疏子空间聚类综述.自动化学报, 2015, 41(8): 1373-1384. (WANG W W, LI X P, FENG X C, et al. A Survey on Sparse Subspace Clustering. Acta Automatica Sinica, 2015, 41(8): 1373-1384.) [21] TANG H Y, ZHU J H, ZHENG Q H, et al. Label Enhancement with Sample Correlations via Low-Rank Representation // Proc of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 5932-5939. [22] 胡文玉,李声豪,涂志辉,等.联合lp/l2,p范数极小化的序列子空间聚类算法.模式识别与人工智能, 2020, 33(3): 221-233. (HU W Y, LI S H, TU Z H, et al. Sequential Subspace Clus-tering via Joint lp/l2,p-Norms Minimization. Pattern Recognition and Artificial Intelligence, 2020, 33(3): 221-233.) [23] FAZEL M. Matrix Rank Minimization with Applications[Z/OL]. [2020-07-26]. http://faculty.washington.edu/mfazel/orals3.pdf. [24] CANDÈS E J, RECHT B. Exact Matrix Completion via Convex Optimization[C/OL]. [2020-07-26]. https://arxiv.org/pdf/0805.4471.pdf. [25] KESHAVAN R H, MONTANARI A, OH S. Matrix Completion from Noisy Entries // Proc of the 22nd International Conference on Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2009: 952-960. [26] 史加荣,郑秀云,魏宗田,等.低秩矩阵恢复算法综述.计算机应用研究, 2013, 30(6): 1601-1605. (SHI J R, ZHENG X Y, WEI Z T, et al. Survey on Algorithms of Low-Rank Matrix Recovery. Application Research of Computers, 2013, 30(6): 1601-1605.) [27] BERTSEKAS D P. Constrained Optimization and Lagrange Multiplier Methods. Salt Lake City, USA: Academic Press, 1982. [28] LIN Z C, CHEN M M, MA Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. Journal of Structural Biology Mathematical Programming, 2010, 181(2): 116-127. [29] 张茁涵,曹容玮,李 晨,等.隐式低秩稀疏表示的多视角子空间聚类.模式识别与人工智能, 2020, 33(4): 344-352. (ZHANG Z H, CAO R W, LI C, et al. Latent Low-Rank Sparse Multi-view Subspace Clustering. Pattern Recognition and Artificial Intelligence, 2020, 33(4): 344-352.) [30] CHA S H. Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. International Journal of Mathematical Models and Methods in Applied Science, 2017, 1(4): 300-307. [31] 赵 权,耿 新.标记分布学习中目标函数的选择.计算机科学与探索, 2017, 11(5): 708-719. (ZHAO Q, GENG X. Selection of Target Function in Label Distribution Learning. Journal of Frontiers of Computer Science and Technology, 2017, 11(5): 708-719.) [32] ZHU X J. Semi-supervised Lear-ning with Graphs. Ph.D. Dissertation. Pittsburgh, USA: Carnegie Mellon University, 2005. [33] EISEN M B, SPELLMAN P T, BROWN P O, et al. Cluster Ana-lysis and Display of Genome-Wide Expression Patterns. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(25): 14863-14868. [34] LYONS M, AKAMATSU S, KAMACHI M, et al. Coding Facial Expressions with Gabor Wavelets // Proc of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition. Washington, USA: IEEE, 1998: 200-205. [35] YIN L J, WEI X Z, SUN Y, et al. A 3D Facial Expression Database for Facial Behavior Research // Proc of the 7th International Conference on Automatic Face and Gesture Recognition. Washington, USA: IEEE, 2006: 211-216.