模式识别与人工智能
2025年4月3日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2021, Vol. 34 Issue (4): 367-374    DOI: 10.16451/j.cnki.issn1003-6059.202104009
“智能医疗与医学图像处理”专辑 最新目录| 下期目录| 过刊浏览| 高级检索 |
面向磁共振图像重建的k空间降采样优化
宣锴1, 王乾1
1.上海交通大学 生物医学工程学院 上海 200240
Optimizing k-Space Subsampling Pattern toward MRI Reconstruction
XUAN Kai1, WANG Qian1
1. School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240

全文: PDF (1883 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 成像速度是关系磁共振临床应用效能的重要因素,在k空间中降采样,再配合图像重建,可有效加快成像速度.因此,文中考虑降采样方式对磁共振图像重建质量的影响,在训练深度学习网络进行磁共振图像重建的情况下,提出联合优化k空间降采样方式与重建模型的方法.从k空间全采样入手,逐步删除次要的相位编码,直到针对相位编码的采样满足稀疏性要求为止.同时,采样方式的优化是和深度学习图像重建模型参数优化交替进行,即赋予每个相位编码一个权重,通过权重大小确定相位编码的重要性,在优化重建网络参数的同时,完成对k空间降采样方式的优化.实验表明文中方法可提升磁共振图像重建质量.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
宣锴
王乾
关键词 磁共振图像深度学习图像重建网络剪枝    
Abstract:Imaging velocity is a major factor affecting clinical applications of magnetic resonance(MR) imaging. And an effective solution of reducing scanning time is to under-sample in k-space and reconstruct the image from under-sampled MR signals. In this paper, the impact of under-sampling pattern on reconstruction quality is analyzed and a joint optimization strategy is proposed to update the under-sampling pattern with image reconstruction model in the context of deep-learning. To optimize the non-continuous under-sampling pattern, it is firstly initialized with full-sampling pattern. Then, relatively less important phase-encodings are gradually pruned until the sparsity requirement in k-space is satisfied. And the optimization of k-space under-sampling pattern is conducted alternatively with that of the reconstruction model. Moreover, the relative importance is estimated with the weight by assigning weight to each phase-coding. Experiments demonstrate that the proposed method improves the quality of the reconstructed MR image compared with the proposed method.
Key wordsMagnetic Resonance Image(MRI)    Deep Learning    Image Reconstruction    Network Pruning   
收稿日期: 2020-08-04     
ZTFLH: TP 391  
基金资助:上海市科学技术委员会科技计划项目(No.19QC1400600)资助
通讯作者: 王 乾,博士,研究员,主要研究方向为医学图像处理.E-mail:wang.qian@sjtu.edu.cn.   
作者简介: 宣 锴,博士研究生,主要研究方向为医学图像处理.E-mail:kaixuan@sjtu.edu.cn.
引用本文:   
宣锴, 王乾. 面向磁共振图像重建的k空间降采样优化[J]. 模式识别与人工智能, 2021, 34(4): 367-374. XUAN Kai, WANG Qian. Optimizing k-Space Subsampling Pattern toward MRI Reconstruction. , 2021, 34(4): 367-374.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202104009      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2021/V34/I4/367
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn