模式识别与人工智能
2025年4月3日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2021, Vol. 34 Issue (10): 957-968    DOI: 10.16451/j.cnki.issn1003-6059.202110008
“自适应分类与聚类学习”专题 最新目录| 下期目录| 过刊浏览| 高级检索 |
自适应Rulkov神经元聚类算法
廖云荣1, 任海鹏1
1.西安工业大学 兵器科学与技术学院 西安 710021
Adaptive Rulkov Neuron Clustering Algorithm
LIAO Yunrong1, REN Haipeng1
1. College of Armament Science and Technology, Xi'an Technological University, Xi'an 710021

全文: PDF (1386 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对类间间距较小、可分性较差的样本数据聚类问题,文中提出自适应Rulkov神经元聚类算法.首先,构建基于自适应距离和共享近邻的相似度矩阵,将样本构成的无向图的最优分割问题转化为拉普拉斯矩阵的谱分解问题,并按特征值大小选取拉普拉斯矩阵的特征向量作为新的样本特征,增大样本类间间距,减小类内间距.然后,将样本根据新特征映射为神经元,样本特征距离决定神经元之间的耦合权值,通过耦合强度自学习进一步提升样本可分性.最后,通过强连通分量实现样本聚类.在多个合成数据集和真实数据集上的实验表明文中算法获得较优的聚类效果.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
廖云荣
任海鹏
关键词 共享近邻相似度矩阵Rulkov神经元自适应学习    
Abstract:Aiming at the clustering of sample datasets with small inter-class distance and poor separability, an adaptive Rulkov neuron clustering algorithm is proposed. Firstly, a similarity matrix based on adaptive distance and shared nearest neighbor is constructed. Secondly, the optimal segmentation of the undirected graph consisting of samples is replaced by the Laplace spectral decomposition of the matrix according to the similarity matrix, and the eigen vectors of Laplacian matrix with larger eigen values are selected as new features of the samples. Thus, the inter-class distance is increased and the intra-class spacing of the samples is reduced. Then, the samples are mapped to the neurons with the mutual coupling strength determined by the distance of the samples. The separability of the different clusters is improved by the self-learning of the mutual coupling strength. Finally, the strong coupled subset in the neural network is utilized as clustering result. The comparative experiments are conducted on synthetic and real datasets. The results show that the proposed algorithm achieves better clustering performance.
Key wordsShared Nearest Neighbor    Similarity Matrix    Rulkov Neuron    Adaptive Learning   
收稿日期: 2021-04-12     
ZTFLH: TP 391  
通讯作者: 任海鹏,博士,教授,主要研究方向为复杂系统控制、智能信息处理.E-mail:renhaipeng@xaut.edu.cn.   
作者简介: 廖云荣,硕士研究生,主要研究方向为计算机视觉、数字图像处理算法硬件实现.E-mail:lyr_0517@163.com.
引用本文:   
廖云荣, 任海鹏. 自适应Rulkov神经元聚类算法[J]. 模式识别与人工智能, 2021, 34(10): 957-968. LIAO Yunrong, REN Haipeng. Adaptive Rulkov Neuron Clustering Algorithm. , 2021, 34(10): 957-968.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202110008      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2021/V34/I10/957
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn