模式识别与人工智能
2025年4月13日 星期日   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2023, Vol. 36 Issue (5): 407-418    DOI: 10.16451/j.cnki.issn1003-6059.202305002
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于视觉多头注意力与跨层白化的水下图像增强网络
丛晓峰1, 桂杰1,2, 贺磊2, 章军3
1.东南大学 网络空间安全学院 南京 211189;
2.紫金山实验室 南京 211189;
3.安徽大学 人工智能学院 合肥 230039
Underwater Image Enhancement Network Based on Visual Multi-head Attention and Skip-Layer Whitening
CONG Xiaofeng1, GUI Jie1,2, HE Lei2, ZHANG Jun3
1. School of Cyber Science and Engineering, Southeast University, Nanjing 211189;
2. Purple Mountain Laboratories, Nanjing 211189;
3. School of Artificial Intelligence, Anhui University, Hefei 230039

全文: PDF (4935 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 由于水下的光吸收现象、散射现象与小粒子的存在,水下图像存在色彩失衡与细节失真问题.为此,文中设计基于视觉多头自注意力与跨层白化的水下图像增强网络.采用层级式的架构,由编码路径进行特征提取并由解码路径进行图像重建,编码与解码路径的核心组件是视觉多头自注意力模块.对浅层特征进行实例白化处理,并将实例白化后的浅层特征通过跨层连接嵌入到深层特征中作为跨层白化路径.内容损失与结构损失用于网络的训练过程.在基准水下图像数据集上进行对比实验,定量与视觉结果表明视觉多头自注意力与实例白化对水下增强任务是有效的.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
丛晓峰
桂杰
贺磊
章军
关键词 水下成像视觉注意力跨层白化质量复原    
Abstract:Due to the phenomena of light absorption and scattering, as well as the presence of small particles in underwater environment, underwater images suffer from the problems of color imbalance and detail distortion. To address this issue, an underwater image enhancement network based on visual multi-head attention and skip-layer whitening is proposed in this paper. A hierarchical architecture is adopted, feature extraction is performed by the encoding path and image reconstruction is carried out by the decoding path. The main components of the encoding and decoding paths are visual multi-head self-attention blocks. Instance whitening is applied to shallow features. The features of shallow layer after instance whitening are embedded into the features of deep layer by skip-layer connection as skip-layer whitening path. Content loss and structure loss are employed in the training process of the proposed network. The comparative experiment on benchmark underwater image datasets demonstrates the effectiveness of visual multi-head self-attention and instance whitening for underwater enhancement task, both quantitatively and visually.
Key wordsUnderwater Imaging    Visual Attention    Skip-Layer Whitening    Quality Restoration   
收稿日期: 2023-03-16     
ZTFLH: TP391  
基金资助:国家自然科学基金项目(No.62172090)、东南大学新进教师科研启动经费项目(No.RF1028623097)资助
通讯作者: 章 军,博士,教授,主要研究方向为计算机视觉、模式识别.E-mail:junzha ng@ahu.edu.cn.   
作者简介: 丛晓峰,博士研究生,主要研究方向为水下图像增强、图像去雾.E-mail:cxf_svip@163.com. 桂 杰,博士,教授,主要研究方向为生成式算法、图像去雾、自监督学习.E-mail:guijie@seu.edu.cn. 贺 磊,博士,副研究员,主要研究方向为网络空间安全、内生安全.E-mail:helei@pmlabs.com.cn.
引用本文:   
丛晓峰, 桂杰, 贺磊, 章军. 基于视觉多头注意力与跨层白化的水下图像增强网络[J]. 模式识别与人工智能, 2023, 36(5): 407-418. CONG Xiaofeng, GUI Jie, HE Lei, ZHANG Jun. Underwater Image Enhancement Network Based on Visual Multi-head Attention and Skip-Layer Whitening. Pattern Recognition and Artificial Intelligence, 2023, 36(5): 407-418.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202305002      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2023/V36/I5/407
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn