模式识别与人工智能
2025年4月5日 星期六   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2023, Vol. 36 Issue (5): 433-447    DOI: 10.16451/j.cnki.issn1003-6059.202305004
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
协调多尺度决策系统中基于测试代价的属性与尺度选择
吴迪1,2,3,4, 廖淑娇1,2,3,4, 范译文1,2,3,4
1.闽南师范大学 数学与统计学院 漳州 363000;
2.闽南师范大学 福建省粒计算及其应用重点实验室 漳州 363000;
3.闽南师范大学 数字福建气象大数据研究所 漳州 363000;
4.闽南师范大学 数据科学与统计重点实验室 漳州 363000
Attribute and Scale Selection Based on Test Cost in Consistent Multi-scale Decision Systems
WU Di1,2,3,4, LIAO Shujiao1,2,3,4, FAN Yiwen1,2,3,4
1. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000;
2. Fujian Key Laboratory of Granular Computing and Application, Minnan Normal University, Zhangzhou 363000;
3. Institute of Meteorological Big Data-Digital Fujian, Minnan Normal University, Zhangzhou 363000;
4. Fujian Key Laboratory of Data Science and Statistics, Minnan Normal University, Zhangzhou 363000

全文: PDF (718 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 对多尺度决策系统进行处理可以使复杂的问题简单化,属性与尺度的同步选择是该处理过程中一个重要方法.此外,现实中数据处理经常需要考虑代价因素的影响,但是,目前研究还没有在属性与尺度的同步选择中考虑代价因素.为了解决这一问题,文中基于测试代价,研究协调多尺度决策系统的属性与尺度选择.首先,构造相应的粗糙集理论模型,模型中的定义及性质同时考虑属性和尺度这两个要素,并给出基于测试代价的属性-尺度重要度函数.然后,基于适用于多尺度决策系统的粗糙集概念及性质,提出属性与尺度同步选择的启发式算法.在UCI数据集上的实验表明,文中算法可大幅降低总测试代价,提升计算效率.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴迪
廖淑娇
范译文
关键词 属性与尺度选择测试代价多尺度决策系统单调性    
Abstract:The processing of multi-scale decision systems can simplify the complex problem, and simultaneous selection of attributes and scales is an important method in this process. In addition, the influence of cost factors is often taken into consideration in practical data processing. However, there is no research on cost factors in the simultaneous selection of attributes and scales. To solve this problem, the method of attribute and scale selection based on test cost in consistent multi-scale decision systems is proposed in this paper. Firstly, a corresponding rough set theoretical model is constructed. Both attribute and scale are considered in definitions and properties of the constructed theoretical model, and the test cost-based attribute-scale significance function is provided. Then, on the basis of concepts and properties of rough set applicable to multi-scale decision systems, a heuristic algorithm for simultaneous selection of attributes and scales is proposed. Experiments on UCI dataset show that the proposed algorithm significantly reduces the total test cost and improves computational efficiency.
Key wordsAttribute and Scale Selection    Test Cost    Multi-scale Decision System    Monotonicity   
收稿日期: 2023-02-27     
ZTFLH: TP18  
基金资助:国家自然科学基金项目(No.12101289)资助
通讯作者: 廖淑娇 ,博士,教授,主要研究方向为粒计算、数据挖掘、人工智能.E-mail:sjliao2011@163.com.   
作者简介: 吴 迪,硕士研究生,主要研究方向为粗糙集、粒计算、数据挖掘.E-mail:wudi20172021@163.com. 范译文,硕士研究生,主要研究方向为粗糙集、粒计算、数据挖掘等.E-mail:1483426583@qq.com.
引用本文:   
吴迪, 廖淑娇, 范译文. 协调多尺度决策系统中基于测试代价的属性与尺度选择[J]. 模式识别与人工智能, 2023, 36(5): 433-447. WU Di, LIAO Shujiao, FAN Yiwen. Attribute and Scale Selection Based on Test Cost in Consistent Multi-scale Decision Systems. Pattern Recognition and Artificial Intelligence, 2023, 36(5): 433-447.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202305004      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2023/V36/I5/433
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn