模式识别与人工智能
2025年8月11日 星期一   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2023, Vol. 36 Issue (11): 1041-1058    DOI: 10.16451/j.cnki.issn1003-6059.202311007
通信与多模态感知联觉机理和智能融合 最新目录| 下期目录| 过刊浏览| 高级检索 |
路端多源数据空间一致性数据集构建及评估方法研究
陈志伟1, 张皓霖1, 严宇宸1, 陈仕韬1
1.西安交通大学 人工智能与机器人研究所 视觉信息与应用国家工程研究中心 人机混合增强智能全国重点实验室 西安 710049
Construction of Roadside Multi-source Data Space Consistency Dataset and Research on Evaluation Methods
CHEN Zhiwei1, ZHANG Haolin1, YAN Yuchen1, CHEN Shitao1
1. National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center of Visual Information and Applications, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049

全文: PDF (6855 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 

构建多源传感数据空间一致性是路端多模态数据融合的基础,在车路协同及路端智能中发挥重要作用.然而,现有的路端多模态数据集主要侧重于目标检测等识别类任务的研究,缺少多源传感器之间的多种空间变换信息,不足以支撑路端多源数据空间一致性问题的研究.因此,文中构建一个专门用于路端多源数据空间一致性问题研究的数据集——InfraCalib(https://github.com/chenzhiwei888/InfraCalib-Dataset).数据集共包含23万多帧图像与点云数据,由两个路端智能移动设备采集,覆盖场景、模态、光照、设备空间位置及传感器姿态等多样变化.通过匹配特征关键点对关联多模态数据,构建PnP(Perspective-n-Point)问题,并利用最小重投影误差法解算外参矩阵,作为近似真值标签.最后,在InfraCalib数据集上进行经典特征匹配算法的实验分析,并讨论多源传感器外参标定的量化评估指标.

服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈志伟
张皓霖
严宇宸
陈仕韬
关键词 多源数据空间一致性车路协同空间变换最小重投影误差评估指标    
Abstract

The spatial consistency of multi-source sensing data is established as the foundation for the fusion of roadside multi-modal data, playing a crucial role in vehicle-to-infrastructure and roadside intelligence. However, existing roadside multi-modal datasets predominantly focus on recognition tasks such as object detection, lacking various spatial transformation information between multi-source sensors. This deficiency hinders the research into the spatial consistency problem of multi-source data at the roadside. Therefore, a dataset specifically designed for the study of the spatial consistency problem in roadside multi-source data is constructed in this paper-InfraCalib(https://github.com/chenzhiwei888/InfraCalib-Dataset). The dataset comprises over 230,000 frames of images and point cloud data, collected by two roadside smart mobile devices, covering diverse changes in scenes, modalities, lighting, device spatial positions and sensor postures. By matching feature key point pairs to correlate multi-modal data, a perspective-n-point(PnP) problem is constructed, and the extrinsic parameter matrix is solved using the minimum reprojection error method, serving as an approximate ground truth label. Finally, an experimental analysis of the classic feature matching algorithm is conducted on the InfraCalib dataset, and the discussion revolves around the quantitative evaluation indicators for the calibration of external parameters in multi-source sensors.

Key wordsMulti-source Data Spatial Consistency    Vehicle-to-Infrastructure    Spatial Transformation    Minimum Reprojection Error    Evaluation Indicator   
收稿日期: 2023-10-10     
ZTFLH: TP181  
基金资助:

国家重点研发计划项目(No.2022YFB2502900)、国家自然科学基金项目(No.62088102)资助

通讯作者: 陈仕韬,博士,助教,主要研究方向为无人驾驶.E-mail:chenshitao@xjtu.edu.cn.   
作者简介: 陈志伟,硕士研究生,主要研究方向为智能交通.E-mail:3121155023@stu.xjtu.edu.cn.张皓霖,博士研究生,主要研究方向为无人驾驶、车路协同.E-mail:zhanghaolin@xjtu.edu.cn.严宇宸,博士研究生,主要研究方向为多传感器的标定与感知.E-mail:yanyuchen@stu.xjtu.edu.cn.
引用本文:   
陈志伟, 张皓霖, 严宇宸, 陈仕韬. 路端多源数据空间一致性数据集构建及评估方法研究[J]. 模式识别与人工智能, 2023, 36(11): 1041-1058. CHEN Zhiwei, ZHANG Haolin, YAN Yuchen, CHEN Shitao. Construction of Roadside Multi-source Data Space Consistency Dataset and Research on Evaluation Methods. Pattern Recognition and Artificial Intelligence, 2023, 36(11): 1041-1058.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202311007      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2023/V36/I11/1041
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn