模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (3): 242-252    DOI: 10.16451/j.cnki.issn1003-6059.202403005
基于图神经网络的推荐系统 最新目录| 下期目录| 过刊浏览| 高级检索 |
结合自对比图神经网络与双预测器的会话推荐模型
章淯淞1, 夏鸿斌1,2, 刘渊1,2
1.江南大学 人工智能与计算机学院 无锡 214122;
2.江南大学 人机融合软件与媒体技术省高校重点实验室 无锡 214122
Session-Based Recommendation Model with Self Contrastive Graph Neural Network and Dual Predictor
ZHANG Yusong1, XIA Hongbin1,2, LIU Yuan1,2
1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122;
2. Jiangsu Key University Laboratory of Software and Media Te-chnology under Human-Computer Cooperation, Jiangnan University, Wuxi 214122

全文: PDF (753 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 基于会话的推荐旨在利用短时匿名会话预测用户行为.现有结合图神经网络与对比学习的会话推荐模型大多采用联合优化交叉熵损失与对比学习损失的方法,但二者所起作用相似,同时需要构建大量复杂的正负样本,为模型带来负担.此外,简单的线性预测器不能较好地预测带有用户随机行为的数据.针对上述问题,文中提出结合自对比图神经网络与双预测器的会话推荐模型(Session-Based Recommendation Model with Self Contrastive Graph Neural Network and Dual Predictor, SCGNN).首先,使用双视图建模原始会话,采用改进的图神经网络学习物品嵌入与会话嵌入,并通过自对比学习优化物品表示.然后,提出用户行为感知因子,应对用户随机行为带来的影响.最后,采用决策森林预测器与线性预测器对物品进行预测,并提出软标签生成策略,通过协同过滤与当前会话类似的历史会话以辅助预测.在Tmall、Diginetica、Nowplaying数据集上的实验表明文中模型的有效性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
章淯淞
夏鸿斌
刘渊
关键词 会话推荐图神经网络自对比学习多预测器    
Abstract:Session-based recommendation aims to predict user behavior based on short-term anonymous sessions. In most of the existing session-based recommendation models using graph neural network and contrastive learning, joint optimization of cross-entropy loss and contrastive learning loss is typically adopted. However, these two methods play similar roles and require the construction of a large number of complex positive and negative samples, bringing a burden to the model. Moreover, simple linear predictor struggles to predict the data with random behaviors of users. To solve the problems, a session-based recommendation model with self contrastive graph neural network and dual predictor is proposed(SCGNN). Firstly, the original session is built into two views, an improved graph neural network is employed to learn item and session embeddings, and item representation is optimized by self-contrastive learning. Then, a user behavior-aware factor is introduced to mitigate the impact of user random behaviors. Finally, the decision forest predictor and linear predictor are both utilized to predict the items, and soft label generation strategy is proposed for assist prediction by collaboratively filtering the historical sessions similar to the current session. Experiments on three benchmark datasets, Tmall, Diginetica and Nowplaying, validate the effectiveness of SCGNN.
Key wordsSession-Based Recommendation    Graph Neural Network    Self-Contrastive Learning    Multiple Predictor   
收稿日期: 2024-01-26     
ZTFLH: TP 391  
基金资助:国家自然科学基金项目(No.61972182)资助
通讯作者: 夏鸿斌,博士,教授,主要研究方向为个性化推荐、自然语言处理.E-mail:hbxia@163.com.   
作者简介: 章淯淞,硕士研究生,主要研究方向为推荐系统、深度学习.E-mail:yszhang0201@163.com. 刘 渊,博士,教授,主要研究方向为网络安全、社交网络.E-mail:lyuan1800@sina.com.
引用本文:   
章淯淞, 夏鸿斌, 刘渊. 结合自对比图神经网络与双预测器的会话推荐模型[J]. 模式识别与人工智能, 2024, 37(3): 242-252. ZHANG Yusong, XIA Hongbin, LIU Yuan. Session-Based Recommendation Model with Self Contrastive Graph Neural Network and Dual Predictor. Pattern Recognition and Artificial Intelligence, 2024, 37(3): 242-252.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202403005      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I3/242
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn