模式识别与人工智能
2025年5月3日 星期六   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (6): 557-569    DOI: 10.16451/j.cnki.issn1003-6059.202406006
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
深度融合频域和空间域特征的多粒度动态场景图像去模糊网络
陈姿含1,2, 张红云1,2, 苗夺谦1,2, 蔡克参1,2
1.同济大学 电子与信息工程学院 上海 201804;
2.同济大学 嵌入式系统与服务计算教育部重点实验室 上海 201804
Multi-granularity Dynamic Scene Image Deblurring Network Based on Deep Fusion of Frequency Domain and Spatial Domain Features
CHEN Zihan1,2, ZHANG Hongyun1,2, MIAO Duoqian1,2, CAI Kecan1,2
1. College of Electronic and Information Engineering, Tongji University, Shanghai 201804;
2. Key Laboratory of Embedded Systems and Service Computing of Ministry of Education, Tongji University, Shanghai 201804

全文: PDF (4922 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 动态场景下的图像去模糊具有高度的不适定性,相机与被拍摄目标之间的相对运动使模糊呈现非均匀性.现有深度学习方法大多集中于空间域而忽略频域对于结构及细节恢复的潜在贡献,导致去模糊效果欠佳.为了解决此问题,文中重新审视频域信息在图像去模糊中的作用,提出深度融合频域和空间域特征的多粒度动态场景图像去模糊网络.首先,提出频域门控的频空特征深度融合模块,充分挖掘空间域和频域信息间的相关性,减少融合后特征的冗余,增强两域之间的互补.然后,构建多粒度去模糊网络,充分利用空间域和频域中的不同粒度信息进行从粗到细的图像去模糊.最后,针对训练和测试时输入特征图尺寸不同导致的频域特征图分辨率不匹配问题,采用频域分辨率自适应的测试策略,保持频率变化的一致性.在合成数据集GoPro、HIDE和真实数据集RealBlur上的实验表明文中网络在重建清晰图像方面表现较优,同时参数量及效率具有一定的竞争力.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈姿含
张红云
苗夺谦
蔡克参
关键词 动态场景图像去模糊多粒度去模糊网络频域门控频空特征深度融合自适应测试    
Abstract:Dynamic scene image deblurring is highly ill-posed, and the relative motion between the camera and the photographed target makes the blur non-uniform. Most existing deep learning methods focus on the spatial domain processing and neglect the potential contribution of the frequency domain to structural and detail recovery, leading to poor deblurring results. To solve the problems, the role of frequency domain information in image deblurring is rethought, and multi-granularity dynamic scene image deblurring network based on deep fusion of frequency domain and spatial domain features is proposed. Firstly, a frequency domain gated frequency-spatial feature deep fusion module is proposed to fully explore the correlation between spatial domain and frequency domain information. The redundancy of the fused features is reduced and the complementarity between the two domains is enhanced. Secondly, based on the proposed module, a multi-granularity network is constructed, and it fully utilizes different granularity information in the spatial domain and frequency domain for coarse-to-fine image deblurring. Finally, to solve the problem of frequency domain feature map resolution mismatch caused by different input feature map sizes during training and testing, a frequency domain resolution adaptive testing strategy is adopted to maintain the consistency of frequency changes. Experiments conducted on synthetic datasets, GoPro and HIDE, and a real dataset, RealBlur, demonstrate the proposed algorithm outperforms existing advanced algorithms in reconstructing clear images with competitive parameters and efficiency.
Key wordsDynamic Scene Image Deblurring    Multi-granularity Deblurring Network    Frequency Domain Gating    Deep Fusion of Frequency and Space Features    Adaptive Testing   
收稿日期: 2024-05-28     
ZTFLH: TP 389.1  
基金资助:国家重点研发计划项目(No.2022YFB3104700)、国家自然科学基金项目(No.62076182,62376198)、上海市自然科学基金项目(No.22ZR1466700)资助
通讯作者: 张红云,博士,副教授,主要研究方向为主曲线算法、粒计算、计算机视觉.E-mail:zhanghongyun@tongji.edu.cn.   
作者简介: 陈姿含,硕士研究生,主要研究方向为计算机视觉、粒计算.E-mail:2230789@tongji.edu.cn. 苗夺谦,博士,教授,主要研究方向为机器学习、数据挖掘、粒计算、人工智能、文本图像处理.E-mail:dqmiao@tongji.edu.cn. 蔡克参,博士研究生,主要研究方向为计算机视觉、粒计算.E-mail:kecan@tonji.edu.cn.
引用本文:   
陈姿含, 张红云, 苗夺谦, 蔡克参. 深度融合频域和空间域特征的多粒度动态场景图像去模糊网络[J]. 模式识别与人工智能, 2024, 37(6): 557-569. CHEN Zihan, ZHANG Hongyun, MIAO Duoqian, CAI Kecan. Multi-granularity Dynamic Scene Image Deblurring Network Based on Deep Fusion of Frequency Domain and Spatial Domain Features. Pattern Recognition and Artificial Intelligence, 2024, 37(6): 557-569.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202406006      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I6/557
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn