模式识别与人工智能
2025年4月17日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (12): 1083-1093    DOI: 10.16451/j.cnki.issn1003-6059.202412004
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
高量子位横场伊辛模型的通用波函数重构
丛爽1, 林丽敏1
1.中国科学技术大学 自动化系 合肥 230022
Generalized Wave Function Reconstruction of High-Qubit Transverse-Field Ising Model
CONG Shuang1, LIN Limin1
1. Department of Automation, University of Science and Technology of China, Hefei 230022

全文: PDF (836 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为了研究重构高维横场伊辛模型中基态波函数的泛化性能,文中提出高量子位通用波函数概率分布重构模型.该模型利用Mamba的自回归特性,同时结合高效采样流程,无需额外标签样本就能自动生成独立训练样本.结合多基态尺度缩放与变分蒙特卡洛优化策略,仅利用少量小区间内的不同物理参数训练高量子位通用波函数的模型权值.在40量子位系统波函数重构的数值仿真实验中,仅需采用外场强度为0.5至1.5的部分值进行权值训练,实现外场强度从0至2的量子态族高精度通用波函数的重构.在量子位从40至80的波函数重构数值仿真实验中,文中模型表现出较好的泛化能力和较高的推理性能,为高量子位系统的基态概率分布提供一种高效精确的通用重构方法.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
丛爽
林丽敏
关键词 横场伊辛模型波函数重构高维量子系统自回归模型    
Abstract:A high-dimensional generalized wave function probability distribution reconstruction model is proposed in this paper to investigate the generalization performance of the ground-state wave functions in the reconstructed high-qubit transverse-field Ising model. By leveraging the autoregressive properties of Mamba and combining them with an efficient sampling process, independent training samples can be automatically generated without the need for additional labeled samples. By combining multi-ground-state scaling with the variational Monte Carlo optimization strategy, the model trains the weights of the high-qubit universal wave function using only a small number of different physical parameters within a limited range. In numerical simulation experiments of wave function reconstruction for a 40-qubit system, the model weights are trained using only partial values of external field strength ranging from 0.5 to 1.5, and the model achieves high-precision universal wave function reconstruction of quantum state families with external field strengths ranging from 0 to 2. In numerical simulation experiments of wave function reconstruction for systems with qubits ranging from 40 to 80, the proposed model exhibits better generalization ability and more efficient inference performance, providing an efficient and accurate generalized reconstruction method for the ground-state probability distribution of high-qubit systems.
Key wordsTransverse-Field Ising Model    Wave Function Reconstruction    High-Qubit Quantum System    Autoregressive Model   
收稿日期: 2024-11-21     
ZTFLH: TP 183  
基金资助:国家自然科学基金项目(No.62473354)资助
通讯作者: 丛 爽,博士,教授,主要研究方向为先进控制策略、人工神经网络、智能控制、量子系统控制.E-mail:scong@ustc.edu.cn.   
作者简介: 林丽敏,硕士研究生,主要研究方向为量子状态重构、深度学习.E-mail:linlimin@mail.ustc.edu.cn.
引用本文:   
丛爽, 林丽敏. 高量子位横场伊辛模型的通用波函数重构[J]. 模式识别与人工智能, 2024, 37(12): 1083-1093. CONG Shuang, LIN Limin. Generalized Wave Function Reconstruction of High-Qubit Transverse-Field Ising Model. Pattern Recognition and Artificial Intelligence, 2024, 37(12): 1083-1093.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202412004      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I12/1083
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn