模式识别与人工智能
2025年8月6日 星期三   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2025, Vol. 38 Issue (3): 280-292    DOI: 10.16451/j.cnki.issn1003-6059.202503007
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
谐波校正与泛化的稳态视觉诱发电位检测算法
吕言豪1,2, 罗天健1,2
1.福建师范大学 计算机与网络空间安全学院 福州 350117;
2.福建师范大学 数字福建环境监测物联网实验室 福州 350117
Steady-State Visual Evoked Potential Detection Algorithm Based on Harmonics Correction and Generalization
LÜ Yanhao1,2, LUO Tianjian1,2
1. College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117;
2. Digital Fujian Internet-of-Thing Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou 350117

全文: PDF (717 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 稳态视觉诱发电位(Steady-State Visual Evoked Potential, SSVEP)被广泛应用于设计高信息传输率(Information Transfer Rate, ITR)的脑机接口.现有SSVEP检测算法通过计算最优空间滤波器,抑制非SSVEP成分的同时提高SSVEP成分的信噪比,但严重依赖训练样本的质量,早期会出现性能衰减.为了突破该瓶颈,文中提出谐波校正与泛化的稳态视觉诱发电位检测算法.首先,通过正余弦谐波参考信号校正训练均值模板,提升SSVEP刺激呈现中前期的ITR.然后,联合任务相关成分分析算法,有效提升SSVEP刺激呈现后期的ITR.在SSVEP检测过程中,加权匹配两种类型的均值训练模板,保证在任意SSVEP呈现时期都保持较高的ITR.在两个公开的SSVEP数据集上进行的对比实验表明,文中算法的SSVEP检测准确率、ITR和计算效率都较优.此外,消融实验也证实算法对校准数据要求较低,因此该研究为设计资源受限的脑机接口提供一种新的选择.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 稳态视觉诱发电位(SSVEP)典型相关分析谐波模板校正任务相关成分分析脑机接口    
Abstract:Steady-state visual evoked potential(SSVEP) is widely utilized in the design of brain-computer interfaces with high information transfer rates(ITR). Existing SSVEP detection algorithms enhance SSVEP components with high signal-noise ratios while suppressing non-SSVEP components by computing optimal spatial filters. However, these algorithms heavily depend on the quality of training samples, resulting in performance degradation in the early stage of SSVEP presentation. To overcome this limitation, a steady-state visual evoked potential detection algorithm based on harmonics correction and generalization(HCG) is proposed. First, the average training templates are corrected by the sine-cosine harmonics reference signals to enhance ITR during the early-middle stage of SSVEP presentation. Subsequently, the task-related component analysis is employed to enhance ITR during the latter stage of SSVEP presentation. For SSVEP detection, the average training templates are weighted and matched by these two types to ensure high ITR during all stages of SSVEP presentation. Comparative experiments are conducted on two public SSVEP datasets. Experiments demonstrate that HCG outperforms the current benchmark algorithms in terms of detection accuracy and ITR, as well as computational efficiency. Moreover, ablation experiments confirm that the proposed algorithm meets lower calibration data requirements, providing a new solution for the design of resource-constrained brain-computer interfaces.
Key wordsSteady-State Visual Evoked Potential(SSVEP)    Canonical Correlation Analysis    Harmonics Template Correction    Task-Related Component Analysis    Brain-Computer Interface   
收稿日期: 2024-11-13     
ZTFLH: TP391  
基金资助:国家自然科学基金项目(No.62106049)、福建省自然科学基金项目(No.2022J01655)资助
通讯作者: 罗天健,博士,副教授,主要研究方向为模式识别、脑机接口、脑电信号分析等.E-mail:createopenbci@fjnu.edu.cn.   
作者简介: 吕言豪,硕士研究生,主要研究方向为脑机接口、模式识别、脑电信号分析等.E-mail:1144192472@qq.com.
引用本文:   
吕言豪, 罗天健. 谐波校正与泛化的稳态视觉诱发电位检测算法[J]. 模式识别与人工智能, 2025, 38(3): 280-292. LÜ Yanhao, LUO Tianjian. Steady-State Visual Evoked Potential Detection Algorithm Based on Harmonics Correction and Generalization. Pattern Recognition and Artificial Intelligence, 2025, 38(3): 280-292.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202503007      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2025/V38/I3/280
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn