模式识别与人工智能
2025年4月10日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2011, Vol. 24 Issue (3): 417-424    DOI:
论文 最新目录| 下期目录| 过刊浏览| 高级检索 |
归一双向加权(2D)2PCA的手指静脉识别方法
Bi Direction Weighted (2D)2 PCA with Eigenvalue Normalization One for Finger Vein Recognition

全文: PDF (506 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为快速有效地进行手指静脉识别,针对双向二维主成分分析算法降维的特点,并对该算法进行改进,提出在经过图像预处理的手指静脉图像基础上,特征值归一化并双向加权(2D)2PCA的手指静脉识别方法((OW2D)2PCA).分析了累积特征率对(2D)2PCA的影响,以及加权值、特征值归一加权值和累积特征率对W(2D)2PCA、OW(2D)2PCA、(W2D)2PCA、(OW2D)2PCA的影响.通过建立手指静脉图像库的实验结果表明,文中提出方法能够取得较好的识别效果;对(2D)2PCA提取特征向量中的冗余信息有很强的抑制作用,双向加权比单向加权效果更好;而且(OW2D)2PCA的平均识别率高于2DPCA、(2D)2PCA、W(2D)2PCA、(W2D)2PCA和OW(2D)2PCA.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
管凤旭
王科俊
刘靖宇
马慧
关键词 手指静脉识别双向二维主成分分析((2D)2PCA)双向加权二维主成分分析((W2D)2PCA)特征值归一双向加权二维主成分分析((OW2D)2PCA)    
Abstract:To carry out the finger vein recognition quickly and effectively, an algorithm of finger vein recognition is proposed according to the characteristics of bidirection two dimensional principal component analysis ((2D)2PCA) reducing the dimensions. The algorithm is bidirection weighted (2D)2PCA with eigenvalue normalization one ((OW2D)2PCA) based on preprocessing image of the figure vein image. The effect of the rate of cumulate eigenvalue on (2D)2PCA is analyzed, and the effect of the weighted value, the weighted value with eigenvalue normalization one and the rate of cumulate eigenvalue on W(2D)2PCA、OW(2D)2PCA、(W2D)2PCA and (OW2D)2PCA are analyzed as well. Experimental results on our database of finger vein images show that the presented method achieves high recognition accuracy. The redundant information of eigenvectors extracted by (2D)2PCA is restrained strongly, and the bi direction weighted effect is better than the one direction weighted effect. The average recognition rate of (OW2D)2PCA is higher than those of 2DPCA、(2D)2PCA、W(2D)2PCA、(W2D)2PCA and OW(2D)2PCA.
Key wordsFinger Vein Recognition    Bi Direction Two Dimensional Principal Component Analysis ((2D)2PCA)    BiDirection Weighted (2D)2PCA ((W2D)2PCA)    BiDirection Weighted (2D)2PCA with Eigenvalue Normalization One ((OW2D)2PCA)   
    
ZTFLH: TP 391.41  
引用本文:   
管凤旭, 王科俊, 刘靖宇, 马慧. 归一双向加权(2D)2PCA的手指静脉识别方法[J]. 模式识别与人工智能, 2011, 24(3): 417-424. GUAN Feng-Xu, WANG Ke-Jun, LIU Jing-Yu, MA Hui. Bi Direction Weighted (2D)2 PCA with Eigenvalue Normalization One for Finger Vein Recognition. , 2011, 24(3): 417-424.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2011/V24/I3/417
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn