Abstract:Considering the traditional Mean shift algorithm has the problem of low tracking accuracy owing to the background pixels changing in searching window and that of high time complexity led by the updating of hand gesture model, a dynamic deforming hand gesture tracking algorithm based on the integration of region growth and Mean shift is proposed in this paper. The initiation of hand gesture center is automatically accomplished by the frames difference method at the initial tracking stage. Then, the hand gesture pixel samples are gathered by the region growth method. Finally, the position of the object center is accurately located by the Mean shift. Experimental results show that the proposed method can track the dynamic deforming hand gestures accurately in real time, reduce the time complexity of algorithm and make certain the stability and the continuity of the dynamic object tracking.
[1] Ren Haibing, Zhu Yuanxin, Xu Guangyou, et al. Vision-Based Recognition of Hand Gestures: A Survey. Acta Electronica Sinica, 2000, 28(2): 118-122 (in Chinese) (任海兵,祝远新,徐光佑,等.基于视觉手势识别的研究综述.电子学报, 2000, 28(2): 118-122) [2] Wang Liang, Hu Weiming, Tan Tieniu. A Survey of Visual Analysis of Human Motion. Chinese Journal of Computers, 2002, 25(3): 225-237 (in Chinese) (王 亮,胡卫明,谭铁牛.人运动的视觉分析综述.计算机学报, 2002, 25(3): 225-237) [3] Guo Wei, Zhao Yigong, Xie Zhenhua, et al. Robust Object Tracking for Realistic Air Target. Journal of System Simulation, 2008, 20(20): 5687-5690 (in Chinese) (郭 伟,赵亦工,谢振华,等.一种稳健的空中目标跟踪方法.系统仿真学报, 2008, 20(20): 5687-5690) [4] Li Gang, Gao Zheng. A Survey of Automatic Human Face Recognition. Application Research of Computers, 2003, 20(8): 4-9 (in Chinese) (李 刚,高 政.人脸自动识别方法综述.计算机应用研究, 2003, 20(8): 4-9) [5] Zhu Jiyu, Wang Xiying, Wang Weixin, et al. Hand Gesture Recognition Based on Structure Analysis. Chinese Journal of Computers, 2006, 29(12): 2130-2137 (in Chinese) (朱继玉,王西颖,王威信,等.基于结构分析的手势识别.计算机学报, 2006, 29(12): 2130-2137) [6] Chen Fengsheng, Fu C M, Huang C L. Hand Gesture Recognition Using a Real-Time Tracking Method and Hidden Markov Models. Image and Vision Computing, 2003, 21(8): 745-758 [7] Comaniciu D, Meer P. Mean Shift Analysis and Applications // Proc of the IEEE International Conference on Computer Vision. Kerkyra, Greece, 1999, Ⅱ: 1197- 1203 [8] Cheng Yizang. Mean Shift, Mode Seeking, and Clustering. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799 [9] Yan Jia, Wu Minyuan, Chen Shuzhen, et al. Camouflaged Target Tracking Based on Mean Shift.Opto-Electronic Engineering, 2009, 36(2): 11-15 (in Chinese) (颜 佳,吴敏渊,陈淑珍,等.基于Mean Shift算法的伪装目标跟踪.光电工程, 2009, 36(2): 11-15) [10] Xu Haixia, Wang Yaonan, Yuan Xiaofang, et al. A Hierarchical Mean Shift Algorithm for Object Tracking.Acta Automatica Sinica, 2009, 35(4): 401-409 (in Chinese) (许海霞,王耀南,袁小芳,等.一种分层Mean Shift目标跟踪算法.自动化学报, 2009, 35(4): 401-409) [11] Wang Xiying, Zhang Xiwen, Dai Guozhong. An Approach to Tracking Deformable Hand Gesture for Real-Time Interaction.Journal of Software, 2007, 18(10): 2423-2433 (in Chinese) (王西颖,张习文,戴国忠.一种面向实时交互的变形手势跟踪方法.软件学报, 2007, 18(10): 2423-2433) [12] Comaniciu D. Image Segmentation Using Clustering with Saddle Point Detection // Proc of the IEEE International Conference on Image Processing. New York, USA, 2002, Ⅲ: 297-300 [13] Wua K, Yang M. Mean Shift-Based Clustering. Pattern Recognition, 2007, 40(11): 3035-3052 [14] Wen Zhiqiang, Cai Zixing. Convergence Analysis of Mean Shift Algorithm. Journal of Software, 2007, 18(2): 205-212 (in Chinese) (文志强,蔡自兴.Mean shift 算法的收敛性分析.软件学报, 2007, 18(2): 205-212) [15] Li Xiangru, Wu Fuchao, Hu Zhanyi. Convergence of a Mean Shift Algorithm. Journal of Software, 2005,16(3): 365-374 (in Chinese) (李乡儒,吴福朝,胡占义.均值漂移算法的收敛性.软件学报, 2005, 16(3): 365-374) [16] Fan Baoling, Wang Min, Dong Yingdi. Hand Gesture Segmentation Based on Skin Color Detection Technology. Computer Technology and Development, 2008, 18(3): 105-108 (in Chinese) (范保玲,王 民,董颖娣.基于肤色检测技术的手势分割.计算机技术与发展, 2008, 18(3): 105-108) [17] Comaniciu D, Meer P. Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619