模式识别与人工智能
2025年4月10日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2012, Vol. 25 Issue (1): 96-104    DOI:
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
信息熵最小约简问题的若干随机优化算法
马胜蓝,叶东毅
福州大学数学与计算机科学学院福州350108
Research on Computing Minimum Entropy Based Attribute Reduction via Stochastic Optimization Algorithms
MA Sheng-Lan, YE Dong-Yi
College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108

全文: PDF (523 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 现有的启发式属性约简算法一般无法得到信息熵意义下的最小属性约简。为此,文中探讨应用随机优化算法计算信息熵意义下最小属性约简的问题。首先通过定义适当的适应值函数,将信息熵意义下的最小属性约简问题转化为不含约束的适应值优化问题,证明问题转化的等价性。研究基于遗传算法、粒子群优化算法、禁忌搜索以及蚁群算法等若干随机优化算法的求解效率和求解质量,并用一批UCI数据集来加以测试。实验结果表明,文中设计的带增强策略的基于全息粒子群的属性约简算法,具有较高的获得信息熵意义下最小属性约简的概率和较优的算法性能。关键词随机优化算法,粗糙集,信息熵,最小属性约简,全息粒子群中图法分类号TP181ResearchonComputingMinimumEntropyBasedAttributeReductionviaStochasticOptimizationAlgorithmsMASheng-Lan,YEDong-Yi(CollegeofMathematicsandComputerScience,FuzhouUniversity,Fuzhou350108)ABSTRACTExistingheuristicattributereductionalgorithmsgenerallyfailtogetaminimumentropy-basedattributereductionofadecisiontable。Somestochasticoptimizationalgorithmsarediscussedtosolvetheproblemofentropy-basedattributereduction。Firstly,aproperfitnessfunctionisdefinedtotransformtheminimumattributereductionproblemintoafitnessoptimizationproblemwithoutadditionalconstraintsandtheequivalenceoftransformationisproved。Then,thesolvingefficiencyandthesolutionqualityofsomestochasticoptimizationalgorithmsarestudiedsuchasGeneticAlgorithm,ParticleSwarmOptimization,TabusearchandAntColonyOptimization。SomeUCIdatasetsareappliedtotestthoseperformances。TheexperimentalresultsshowthatthefullyinformedPSObasedattributereductionalgorithmwithrefineschemehasahigherprobabilitytofindaminimumentropy-basedattributereductionandgoodperformance。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
马胜蓝
叶东毅
关键词 随机优化算法粗糙集信息熵最小属性约简全息粒子群    
Abstract:Existing heuristic attribute reduction algorithms generally fail to get a minimum entropy-based attribute reduction of a decision table. Some stochastic optimization algorithms are discussed to solve the problem of entropy-based attribute reduction. Firstly, a proper fitness function is defined to transform the minimum attribute reduction problem into a fitness optimization problem without additional constraints and the equivalence of transformation is proved. Then, the solving efficiency and the solution quality of some stochastic optimization algorithms are studied such as Genetic Algorithm, Particle Swarm Optimization, Tabu search and Ant Colony Optimization. Some UCI datasets are applied to test those performances. The experimental results show that the fully informed PSO based attribute reduction algorithm with refine scheme has a higher probability to find a minimum entropy-based attribute reduction and good performance.
Key wordsStochastic Optimization Algorithms    Rough Set    Information Entropy    Minimum Attribute Reduction    Fully Informed PSO   
收稿日期: 2011-01-05     
ZTFLH: TP181  
基金资助:福建省自然科学基金项目(No.2010J01329)、福建省科技计划项目(No.2010H6012,2009J1007)资助
作者简介: 马胜蓝,男,1986年生,硕士研究生,主要研究方向为计算智能。E-mail:msl1121@sina。com。叶东毅,男,1964年生,教授,博士生导师,主要研究方向为计算智能、数据挖掘。
引用本文:   
马胜蓝,叶东毅. 信息熵最小约简问题的若干随机优化算法[J]. 模式识别与人工智能, 2012, 25(1): 96-104. MA Sheng-Lan, YE Dong-Yi. Research on Computing Minimum Entropy Based Attribute Reduction via Stochastic Optimization Algorithms. , 2012, 25(1): 96-104.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2012/V25/I1/96
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn