模式识别与人工智能
2025年4月13日 星期日   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2012, Vol. 25 Issue (2): 346-351    DOI:
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于可分度和支持度的模糊密度赋值融合识别算法
詹永照,张娟,毛启容
江苏大学计算机科学与通信工程学院镇江212013
Fusion Recognition Algorithm Based on Fuzzy Density Determination with Classification Capability and Supportability
ZHAN Yong-Zhao, ZHANG Juan, MAO Qi-Rong
School of Computer Science and Telecommunication Engineering,Jiangsu University,Zhenjiang 212013

全文: PDF (441 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 模糊积分理论可有效处理分类决策不确定性问题。当前模糊密度的确定方法未考虑各个分类器识别结果的可区分程度及各分类器对识别结果的支持程度,会丢失融合识别的相关信息。文中提出基于可分度和支持度的自适应模糊密度赋值融合识别算法。该算法根据各分类器对待识别样本的识别结果的可区分程度和支持程度对分类器的融合模糊密度进行自适应赋值,从而有效实现多分类器融合识别。将该算法应用于自然交互环境下的人脸表情识别和Cohn-Kanade表情识别。实验结果表明,该算法能有效提高总体表情识别率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
詹永照
张娟
毛启容
关键词 融合识别模糊密度可分度支持度人脸表情识别    
Abstract:Fuzzy integral theory can be effectively used to deal with the uncertainties of the classification decisions. However, the classification capability of each classifier for recognition results and the supportability of each classifier for the object recognition are not taken into account in the current methods of fuzzy density determination, which results in the loss of the important information for fusion recognition. To overcome this disadvantage, a fusion recognition algorithm based on fuzzy density determination with classification capability and supportability for each classifier is presented. In this algorithm, the fuzzy densities for the classifier fusion are adaptively determined by classification capability of each classifier for recognition results and supportability of each classifier for the object recognition. Thus, the multi-classifiers fusion recognition can be effectively realized. The proposed algorithm is used to recognize facial expression in natural interaction situation and Cohn-Kanade facial expression database. The experimental results show that the proposed algorithm effectively raises the accuracy of expression recognition.
Key wordsFusion Recognition    Fuzzy Density    Classification Capability    Supportability    Facial Expression Recognition   
收稿日期: 2010-11-11     
ZTFLH: TP391.4  
基金资助:国家自然科学基金资助项目(No.61003183,61170126)
作者简介: 詹永照,男,1962年生,教授,博士生导师,主要研究方向为人机交互、模式识别。E-mail:yzzhan@ujs。edu。cn。张娟,女,1987年生,硕士研究生,主要研究方向为图像处理技术、模式识别。毛启容,女,1975年生,博士,副教授,主要研究方向为人机交互、模式识别。
引用本文:   
詹永照,张娟,毛启容. 基于可分度和支持度的模糊密度赋值融合识别算法[J]. 模式识别与人工智能, 2012, 25(2): 346-351. ZHAN Yong-Zhao, ZHANG Juan, MAO Qi-Rong. Fusion Recognition Algorithm Based on Fuzzy Density Determination with Classification Capability and Supportability. , 2012, 25(2): 346-351.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2012/V25/I2/346
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn