模式识别与人工智能
2025年4月10日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2012, Vol. 25 Issue (6): 928-936    DOI:
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
训练模式对的摄动对折线模糊神经网络稳定性的影响
隋晓琳,王贵君
天津师范大学数学科学学院天津300387
Influence of Perturbations of Training Pattern Pairs on Stability of Polygonal Fuzzy Neural Network
SUI Xiao-Lin, WANG Gui-Jun
College of Mathematics,Tianjin Normal University,Tianjin 300387

全文: PDF (795 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 引入折线模糊数及其扩张运算,针对折线模糊神经网络,定义折线模糊数的最大摄动误差、训练模式对的γ摄动等概念,并基于纠错规则设计该网络连接权的学习算法。其次,当转移函数满足Lipschitz条件和训练模式对发生γ摄动时,在定义折线模糊神经网络对训练模式对摄动的全局稳定性的基础上,应用归纳法证明三层折线模糊神经网络的连接权具有稳定性,进而获得该网络关于训练模式对的γ摄动也具有全局稳定性。最后,通过模拟实例说明训练模式对的摄动对该网络稳定性的影响。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
隋晓琳
王贵君
关键词 折线模糊数折线模糊神经网络训练模式对全局稳定性摄动    
Abstract:The concepts of the maximum perturbation error of polygonal fuzzy numbers and γ-perturbation of training pattern pairs are put forward, and the learning algorithm of connection weight is designed according to error-correction rules by introducing polygonal fuzzy numbers and their operations. Then the definition of the global stability of the polygonal fuzzy neural networks of the perturbation of training pattern pairs is introdued. Secondly, whenever the transfer function satisfies the Lipschitz condition and γ-perturbation occurs in the training pattern pairs,the stability of the connections of the three-layer polygonal fuzzy neural networks is proved by applying mathematical induction. Moreover, that the γ-perturbation of this network with respect to the training pattern pairs possesses the global stability is obtained. Finally, the influence of perturbations of training pattern pairs on the stability of polygonal fuzzy neural networks is explained by the simulative examples.
Key wordsPolygonal Fuzzy Number    Polygonal Fuzzy Neural Networks    Training Pattern Pair    Global Stability    Perturbation   
收稿日期: 2011-12-14     
ZTFLH: TP183  
  O159  
基金资助:国家自然科学基金资助项目(No.60974144)
作者简介: 隋晓林,女,1988年生,硕士研究生,主要研究方向为模糊神经网络、模糊系统。E-mail:xiaolin7941333@yahoo。com。cn。王贵君,男,1962年生,教授,主要研究方向为模糊测试与模糊积分、模糊神经网络、模糊系统逼近。
引用本文:   
隋晓琳,王贵君. 训练模式对的摄动对折线模糊神经网络稳定性的影响[J]. 模式识别与人工智能, 2012, 25(6): 928-936. SUI Xiao-Lin, WANG Gui-Jun. Influence of Perturbations of Training Pattern Pairs on Stability of Polygonal Fuzzy Neural Network. , 2012, 25(6): 928-936.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2012/V25/I6/928
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn