模式识别与人工智能
2025年4月10日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2013, Vol. 26 Issue (6): 598-603    DOI:
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
Fisher极小准则不相关空间算法及其在人脸识别中的应用
杨军1,2,刘妍丽3,冯朝胜1,冯林1
1.四川师范大学计算机科学学院成都610101
2.四川大学计算机学院图形图像研究所成都610064
3.四川师范大学数学与软件科学学院成都610101
An Uncorrelated Space Algorithm Based on Fisher Minimum Criterion and Its Application to Face Recognition
YANG Jun1,2,LIU Yan-Li3,FENG Chao-Sheng1,FENG Lin1
1. College of Computer Science,Sichuan Normal University,Chengdu 610101
2. Institute of Graphics Images,College of Computer,Sichuan University,Chengdu 610064
3. College of Mathematics and Software Science,Sichuan Normal University,Chengdu 610101

全文: PDF (354 KB)   HTML (0 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 不相关空间算法是一种基于广义Fisher准则求解不相关鉴别矢量集的快速算法,但该算法要求总体散度矩阵可逆。针对高维小样本的情况,文中提出求解不相关鉴别矢量集的改进方法。该方法的基本思路是在类间散度矩阵的值空间中运用广义Fisher极小准则求解鉴别矢量集,并讨论在该子空间中进行求解的合理性。针对高维情况下类间散度矩阵值空间的计算效率问题,提出首先利用PCA算法将数据降维,然后在低维空间中求解值空间的策略并讨论其合理性。在ORL人脸数据库上的实验验证该方法的有效性,其识别率高于传统的Fisher脸方法和不相关空间算法。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:Uncorrelated space algorithm is a fast method for extracting uncorrelated discriminant vectors based on the generalized fisher criterion,but it requires the total-scatter matrix to be reversible. To solve this problem,an improved uncorrelated features extraction method based on the generalized Fisher minimum criterion and uncorrelated space algorithm is proposed. The main idea of the proposed method is to solve the discriminant vectors of generalized fisher minimum criterion in the non-null subspace of the between-class scatter matrix. The rationality of the idea is discussed. A strategy including two steps is proposed to get the non-null subspace efficiently from high dimensional data. Firstly,the original data are mapped to a low dimensional subspace by PCA algorithm. Then,the non-null subspace of the between-class scatter matrix can be solved efficiently in the subspace,and the rationality of the process is discussed. The experimental results on standard face database show that the proposed method is efficient with higher accuracies compared with Fisherface algorithm and the uncorrelated space algorithm.
收稿日期: 2011-12-25     
ZTFLH: TP391.41  
基金资助:国家自然科学基金项目(No.60736046)、国家973计划项目(No.2009CB320803)、四川省教育厅科研项目(No.11ZB069)资助
作者简介: 杨军(通讯作者),男,1977年生,副教授,博士研究生,主要研究方向为图像处理、模式识别.E-mail:yanghuajun@163.com.刘妍丽,女,1978年生,硕士,讲师,主要研究方向为统计学习.冯朝胜,男,1972年生,博士,副教授,主要研究方向为信息安全.冯林,男,1972年生,博士,副教授,主要研究方向粗糙集、智能系统.
引用本文:   
杨军,刘妍丽,冯朝胜,冯林. Fisher极小准则不相关空间算法及其在人脸识别中的应用[J]. 模式识别与人工智能, 2013, 26(6): 598-603. YANG Jun,LIU Yan-Li,FENG Chao-Sheng,FENG Lin. An Uncorrelated Space Algorithm Based on Fisher Minimum Criterion and Its Application to Face Recognition. , 2013, 26(6): 598-603.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2013/V26/I6/598
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn