模式识别与人工智能
2025年4月10日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2013, Vol. 26 Issue (11): 1079-1085    DOI:
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于样本相关度和SOM的改进型Wang-Mendel算法
缑锦,陈文瑜
华侨大学计算机科学与技术学院厦门361021
An Improved Wang-Mendel Method Based on Cooperation Degree of Sample and Self-Organizing Mapping
GOU Jin,CHEN Wen-Yu
College of Computer Science Technology,Huaqiao University,Xiamen 361021

全文: PDF (1433 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 Wang-Mendel算法是生成模糊规则库的经典算法.处理过程中,当样本数据存在噪声时,该算法易提取出可信度较低的规则;当样本数据规模增大时,算法效率易快速下降.针对这两个问题,引入样本间协调关系可提高结果的准确性,改善逼近性能.利用SOM算法对样本预处理可有效去噪,且其对样本分布的自适应学习能力可在一定程度上减小样本规模.基于样本相关度和SOM算法,文中提出一种Wang-Mendel模糊规则提取算法,函数逼近和列车控制系统的仿真实验结果表明其具有较好的完备性、鲁棒性和效率.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
缑锦
陈文瑜
关键词 模糊规则完备性鲁棒性    
Abstract:Wang-Mendel algorithm is commonly used as a classic method to generate fuzzy rule base. But rules with low confidence are usually extracted when noise appears in the sample data set,while its efficiency also often drops fast when the scale of sample data increases. To solve those problems,two methods,cooperation relationship and self-organizing mapping (SOM) neural network,are introduced. Cooperation relationship among sample data improves the accuracy of rules and approximation ability to the original model. On the other hand,SOM can well preprocess sample data for denoising and reduce its scale through a self-adaptive learning procedure of weights network. Then an improved Wang-Mendel algorithm is proposed based on cooperation relationship degree of sample data and SOM. The experimental results,including trigonometric function approximation and artificial driving simulation of a train operation control system,show its completeness,robustness and operating efficiency.
Key wordsFuzzy Rules    Completeness    Robustness   
收稿日期: 2013-03-06     
ZTFLH: TP182  
基金资助:国家自然科学基金项目(No.61103170)、福建省教育厅A类科技项目(No.JA12005)资助
作者简介: 缑锦(通讯作者),男,1978年生,博士,副教授,主要研究方向为人工智能、知识工程.E-mail:goujin@hqu.edu.cn.陈文瑜,男,1987年生,硕士研究生,主要研究方向为模糊系统.
引用本文:   
缑锦,陈文瑜. 基于样本相关度和SOM的改进型Wang-Mendel算法[J]. 模式识别与人工智能, 2013, 26(11): 1079-1085. GOU Jin,CHEN Wen-Yu. An Improved Wang-Mendel Method Based on Cooperation Degree of Sample and Self-Organizing Mapping. , 2013, 26(11): 1079-1085.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2013/V26/I11/1079
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn