模式识别与人工智能
2025年4月3日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2014, Vol. 27 Issue (7): 577-583    DOI:
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于免疫猫群优化算法的矢量量化的码书设计及语音识别*
杨淑莹,刘旭鹏,陶冲,刘婷婷
天津理工大学 智能计算及软件新技术重点实验室 天津 300384
Vector Quantization Codebook Design and Speech Recognition Based on Immune Cat Swarm Optimization Algorithm
YANG Shu-Ying, LIU Xu-Peng, TAO Chong, LIU Ting-Ting
Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384

全文: PDF (479 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 在矢量量化的码书设计过程中,针对传统的 LBG算法对初始码书选取的依赖性及易陷入局部最优的缺陷,提出基于免疫猫群优化算法的矢量量化码书设计.将整个种群分为搜索组和跟踪组,运用克隆扩增算子在搜寻组中进行局部搜索,根据适应度值大小调节变异个体数目,保持解的多样性.运用动态疫苗提取与接种算子使跟踪组个体基因与疫苗进行交叉变异,向最优解靠拢,防止无监督交叉变异可能引起的退化现象.通过浓度平衡算子和选择算子更新子代种群,防止种群“早熟”.将训练出全局最优码书输入到HMM模型进行训练和识别,实验结果表明,基于免疫猫群优化算法的矢量量化码书设计不依赖于初始码书选取,鲁棒性强且降低语音识别误差率.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨淑莹
刘旭鹏
陶冲
刘婷婷
关键词 猫群优化算法克隆扩增码书设计语音识别    
Abstract:In the process of codebook design, traditional LBG algorithm is often used for vector quantization which depends on the initial codebook selection and easily falls into local optimum. A vector quantization codebook design method based on immune cat swarm optimization algorithm (ICSO) is proposed to solve the problems.The population is divided into searching group and tracking group. Clonal expansion operator is used for local search in the searching group, and the number of mutation individual is adjusted according to the fitness value. Moreover, dynamic vaccine extraction and vaccination operator are used for global search in the tracking group. The crossover and mutation between individual gene and vaccine make the result close to the optimal solution, and the descendant population is updated through the balance of concentration equilibrium operator and selection operator. Finally, the optimal codebook is obtained from the training vectors by the proposed algorithm and is inputted to the HMM model for training and recognition. The simulation results show that the proposed algorithm does not depend on the selection of initial codebook, has strong robustness and reduces the speech recognition error rate.
Key wordsCat Swarm Optimization Algorithm    Clonal Expansion    Codebook Design    Speech Recognition   
收稿日期: 2013-04-11     
ZTFLH: TP391.4  
基金资助:国家自然科学基金项目(No.61001174)、天津市高等学科科技发展基金项目(No.20071308)资助
作者简介: 杨淑莹,女,1964年生,博士,教授,主要研究方向为模式识别、语音信号处理、图像处理等.E-mail:ysying126@126.com.刘旭鹏(通讯作者),男,1989年生,硕士研究生,主要研究方向为语音信号处理.E-mail:lxppopo@163.com.陶冲,男,1987年生,硕士研究生,主要研究方向为模式识别.刘婷婷,女,1988年生,硕士研究生,主要研究方向为模式识别.
引用本文:   
杨淑莹,刘旭鹏,陶冲,刘婷婷. 基于免疫猫群优化算法的矢量量化的码书设计及语音识别*[J]. 模式识别与人工智能, 2014, 27(7): 577-583. YANG Shu-Ying, LIU Xu-Peng, TAO Chong, LIU Ting-Ting. Vector Quantization Codebook Design and Speech Recognition Based on Immune Cat Swarm Optimization Algorithm. , 2014, 27(7): 577-583.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2014/V27/I7/577
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn