[1] GANTER B, WILLE R. Formal Concept Analysis: Mathematical Foundations. New York, USA: Springer-Verlag, 1999.
[2] WILLE R. Restructuring Lattice Theory: An Approach Based on Hie-rarchies of Concepts // RIVAL I. Ordered Sets. Dordrecht, The Netherlands: Reidel, 1982: 445-470.
[3] YAO Y Y. Concept Lattices in Rough Set Theory // Proc of the IEEE Annual Meeting of the Fuzzy Information. New York, USA: IEEE, 2004: 796-801.
[4] 张文修,魏 玲,祁建军.概念格的属性约简理论与方法.中国科学(E辑), 2005, 35(6): 628-639.
(ZHANG W X, WEI L, QI J J. Attribute Reduction Theory and Approach to Concept Lattice. Science in China(Series E), 2005, 35(6): 628-639.)
[5] WANG X, ZHANG W X. Knowledge Reduction in Concept Lattices Based on Irreducible Elements. Transactions on Computational Science V(Special Issue on Cognitive Knowledge Representation), 2009, 5540: 128-142.
[6] WU W Z, LEUNG Y, MI J S. Granular Computing and Knowledge Reduction in Formal Contexts. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10): 1461-1474.
[7] 魏 玲,祁建军,张文修.决策形式背景的概念格属性约简.中国科学(E辑), 2008, 38(2): 195-208.
(WEI L, QI J J, ZHANG W X. Attribute Reduction Theory of Concept Lattice Based on Decision Formal Contexts. Science in China(Series E), 2008, 38(2): 195-208.)
[8] 张清华,王国胤,刘显全.基于最大粒的规则获取算法.模式识别与人工智能, 2012, 25(3): 388-396.
(ZHANG Q H, WANG G Y, LIU X Q. Rule Acquisition Algorithm Based on Maximal Granule. Pattern Recognition and Artificial Inte-lligence, 2012, 25(3): 388-396.)
[9] LI J H, MEI C L, WANG J H, et al. Rule-Preserved Object Compression in Formal Decision Contexts Using Concept Lattices. Knowledge-Based Systems, 2014, 71: 435-445.
[10] 朱治春,魏 玲.基于类背景的双向规则的获取.西北大学学报(自然科学版), 2015, 45(4): 517-524.
(ZHU Z C, WEI L. Two-Way Rules Acquisition Based on Class Contexts. Journal of Northwest University(Natural Science Edition), 2015, 45(4): 517-524.)
[11] 刘 琳,魏 玲,钱 婷.决策形式背景中具有置信度的三支规则提取.山东大学学报(理学版), 2017, 52(2): 101-110.
(LIU L, WEI L, QIAN T. Three-Way Rules Extraction in Formal Decision Contexts with Confidence. Journal of Shandong University(Natural Science), 2017, 52(2): 101-110.)
[12] KEPRT A, SNÁšEL V. Binary Factor Analysis with Help of Formal Concepts[C/OL].[2018-02-10].http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.3737&rep1&type=pdf.
[13] BELOHLAVEK R, VYCHODIL V. On Boolean Factor Analysis with Formal Concept as Factors[J/OL].[2018-02-10].http://phoebe.inf.upol.cz/~havrlanl/articles/BeVy_Bfafcf.pdf.
[14] BELOHLAVEK R, VYCHODIL V. Discovery of Optimal Factors in Binary Data via a Novel Method of Matrix Decomposition. Journal of Computer and System Sciences, 2010, 76(1): 3-20.
[15] KIM K H. Boolean Matrix Theory and Applications. New York, USA: Marcel Dekker, 1982.
[16] GLODEANU C V. Triadic Factor Analysis[C/OL].[2018-02-10].http://ceur-ws.org/Vol-672/paper12.pdf. |