[1] MA Y L, DONG Y T, LI K, et al. A Survey of Chinese Character Style Transfer // Proc of the Chinese Conference on Image and Graphics Technologies. Berlin, German: Springer, 2019: 392-404.
[2] SHEN W, ZHAO K, JIANG Y, et al. Object Skeleton Extraction in Natural Images by Fusing Scale-Associated Deep Side Outputs // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 222-230.
[3] XIE S N, TU Z W. Holistically-Nested Edge Detection // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 1395-1403.
[4] LONG J, SHELHAMER E, DARRELL T. Fully Convolutional Networks for Semantic Segmentation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 3431-3440.
[5] NOH H, HONG S, HAN B. Learning Deconvolution Network for Semantic Segmentation // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 1520-1528.
[6] JOHNSON J, ALAHI A, LI F F. Perceptual Losses for Real-Time Style Transfer and Super-Resolution // Proc of the European Confe-rence on Computer Vision. Berlin, German: Springer, 2016: 694-711.
[7] CHANG H W, LU J W, YU F, et al. PairedCycleGAN: Asymmetric Style Transfer for Applying and Removing Makeup // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2018: 40-48.
[8] GAO Y, GUO Y, LIAN Z H, et al. Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. ACM Transactions on Graphics, 2019, 38(6): 185:1-185:12.
[9] LUAN Q, WEN F, COHEN-OR D, et al. Natural Image Colorization // Proc of the 18th Eurographics Conference on Rendering Techniques. New York, USA: ACM, 2007: 309-320.
[10] ZHANG R, ISOLA P, EFROS A A. Colorful Image Colorization // Proc of the European Conference on Computer Vision. Berlin, German: Springer, 2016: 649-666.
[11] ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-Image Translation with Conditional Adversarial Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 5967-5976.
[12] ZHANG H, SINDAGI V, PATEL V M. Image De-raining Using a Conditional Generative Adversarial Network. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(11): 3943-3956.
[13] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation // Proc of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, German: Springer, 2015: 234-241.
[14] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Nets // Proc of the 27th International Confe-rence on Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2014, II: 2672-2680.
[15] HINTON G E, SALAKHUTDINOV R R. Reducing the Dimensionality of Data with Neural Networks. Science, 2006, 313(5786): 504-507.
[16] LIU M Y, TUZEL O. Coupled Generative Adversarial Networks // Proc of the 30th International Conference on Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2016: 469-477.
[17] LIU M Y, BREUEL T, KAUTZ J. Unsupervised Image-to-Image Translation Networks // Proc of the 31st International Conference on Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2017: 700-708.
[18] ZHU J Y, PARK T, ISOLA P, et al. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2017: 2242-2251.
[19] ATARSAIKHAN G, LWANA B K, UCHIDA S. Neural Style Di-fference Transfer and Its Application to Font Generation // Proc of the International Workshop on Document Analysis Systems. Berlin, German: Springer, 2020: 544-558.
[20] XI Y K, YAN G L, HUA J, et al. JointFontGAN: Joint Geometry-Content GAN for Font Generation via Few-Shot Learning // Proc of the 28th ACM International Conference on Multimedia. New York, USA: ACM, 2020: 4309-4317.
[21] ODENA A, OLAH C, SHLENS J. Conditional Image Synthesis with Auxiliary Classifier GANs // Proc of the 34th International Conference on Machine Learning. New York, USA: ACM, 2017: 2642-2651.
[22] LYU P, BAI X, YAO C, et al. Auto-encoder Guided GAN for Chinese Calligraphy Synthesis // Proc of the 14th IAPR International Conference on Document Analysis and Recognition. Washington, USA: IEEE, 2017: 1095-1100.
[23] LIAN Z H, ZHAO B, CHEN X D, et al. EasyFont: A Style Learning-Based System to Easily Build Your Large-Scale Handwri-ting Fonts. ACM Transactions on Graphics, 2019, 38(1): 6:1-6:18.
[24] AZADI S, FISHER M, KIM V, et al. Multi-content GAN for Few-Shot Font Style Transfer // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2018: 7564-7573.
[25] SUN D Y, REN T Z, LI C X, et al. Learning to Write Stylized Chinese Characters by Reading a Handful of Examples // Proc of the 27th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 2018: 920-927.
[26] WU S J, YANG C Y, HSU J Y. CalliGAN: Style and Structure-Aware Chinese Calligraphy Character Generator[C/OL]. [2020-11-23]. https://arxiv.org/pdf/2005.12500.pdf.
[27] 史聪伟,赵杰煜,常俊生.基于中轴变换的骨架特征提取算法.计算机工程, 2019, 45(7): 242-250.
(SHI C W, ZHAO J Y, CHANG J S. Skeleton Feature Extraction Algorithm Based on Medial Axis Transformation.Computer Engineering, 2019, 45(7): 242-250.)
[28] COHEN T S, WELLING M. Group Equivariant Convolutional Networks // Proc of the 33rd International Conference on Machine Learning. New York, USA: ACM, 2016: 2990-2999.
[29] BALDI P. Autoencoders, Unsupervised Learning, and Deep Architectures[C/OL]. [2020-11-23]. http://proceedings.mlr.press/v27/baldi12a/baldi12a.pdf.
[30] WANG Z, BOVIK A C, SHEIKH H R, et al. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. |