[1] SHEN X P, BOUTELL M, LUO J B, et al. Multilabel Machine Learning and Its Application to Semantic Scene Classification. Proceedings of SPIE, 2004, 5307: 188-199.
[2] BOUTELL M R, LUO J B, SHEN X P, et al. Learning Multi-label Scene Classification. Pattern Recognition, 2004, 37(9): 1757-1771.
[3] TSOUMAKAS G, KATAKIS I.Multi-label Classification: An Overview. International Journal of Data Warehousing and Mining, 2009, 3(3): 1-13.
[4] READ J, PFAHRINGER B, HOLMES G, et al. Classifier Chains for Multi-label Classification. Machine Learning, 2011, 85(3): 333-359.
[5] ELISSEEFF A, WESTON J.A Kernel Method for Multi-labelled Cla-ssification//Proc of the 14th International Conference on Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2001: 681-687.
[6] THOMPSON P.Automatic Categorization of Case Law//Proc of the 8th International Conference on Artificial Intelligence and Law. New York, USA: ACM, 2001: 70-77.
[7] ULEA O M, ZAMPIERI M, MALMASI S, et al. Exploring the Use of Text Classification in the Legal Domain[C/OL].[2021-05-03]. https://arxiv.org/pdf/1710.09306.pdf.
[8] CONNEAU A, SCHWENK H, BARRAULT L, et al. Very Deep Convolutional Networks for Text Classification//Proc of the 15th Conference of the European Chapter of Association for Computational Linguistics. Stroudsburg, USA: ACL, 2017: 1107-1116.
[9] YAO L, MAO C S, LUO Y.Graph Convolutional Networks for Text Classification[C/OL]. [2021-05-03].https://arxiv.org/pdf/1809.05679v2.pdf.
[10] REYES O, MORELL C, VENTURA S.Scalable Extensions of the ReliefF Algorithm for Weighting and Selecting Features on the Multi-label Learning Context. Neurocomputing, 2015, 161: 168-182.
[11] ZHANG M L, ZHOU Z H.A Review on Multi-label Learning Algorithms. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1819-1837.
[12] LIU J Z, CHANG W C, WU Y X, et al. Deep Learning for Extreme Multi-label Text Classification//Proc of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2017: 115-124.
[13] YOU R H, DAI S Y, ZHANG Z, et al. AttentionXML: Extreme Multi-label Text Classification with Multi-label Attention Based Recurrent Neural Networks[C/OL].[2021-05-03]. https://arxiv.org/pdf/1811.01727v1.pdf.
[14] YANG P C, SUN X, LI W, et al. SGM: Sequence Generation Model for Multi-label Classification//Proc of the 27th International Conference on Computational Linguistics. Stroudsburg, USA: ACL, 2018: 3915-3926.
[15] YE H, JIANG X, LUO Z C, et al. Interpretable Charge Predictions for Criminal Cases: Learning to Generate Court Views from Fact Descriptions//Proc of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: ACL, 2018: 1854-1864.
[16] YANG Z C, YANG D Y, DYER C, et al. Hierarchical Attention Networks for Document Classification//Proc of the Conference of the North American Chapter of the Association for Computational Linguistics(Human Language Technologies). Stroudsburg, USA: ACL, 2016: 1480-1489.
[17] YANG P C, LUO F L, MA S M, et al. A Deep Reinforced Sequence-to-Set Model for Multi-label Classification//Proc of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2019: 5252-5258.
[18] LUO B F, FENG Y S, XU J B, et al. Learning to Predict Charges for Criminal Cases with Legal Basis//Proc of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2017: 2727-2736.
[19] DU C X, CHEN Z Z, FENG F L, et al. Explicit Interaction Model towards Text Classification[C/OL].[2021-05-03]. https://arxiv.org/pdf/1811.09386v1.pdf.
[20] BYRD J, LIPTON Z C.What Is the Effect of Importance Weighting in Deep Learning?//Proc of the 36th International Confe-rence on Machine Learning. New York, USA: ACM, 2019: 872-881.
[21] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
[22] CUI Y, JIA M L, LIN T Y, et al. Class-Balanced Loss Based on Effective Number of Samples//Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 9260-9269.
[23] VASWANI A, SHAZEER N, PARMAR N, et al.Attention Is All You Need//Proc of the 31st International Conference on Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2017: 6000-6010.
[24] CHEN Z M, WEI X S, WANG P, et al. Multi-label Image Recognition with Graph Convolutional Networks//Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 5172-5181.
[25] NAM J, KIM J, MENCÍA E L, et al. Large-Scale Multi-label Text Classification Revisiting Neural Networks//Proc of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, Germany: Springer, 2014: 437-452.
[26] 王得贤. 法律文书中的要素识别方法研究.硕士学位论文.太原:山西大学, 2020.
(WANG D X.Research on Element Identification for Legal Documents. Master Dissertation. Taiyuan, China: Shanxi University, 2020.)
[27] LIN J Y, SU Q, YANG P C, et al. Semantic-Unit-Based Dilated
Convolution for Multi-label Text Classification//Proc of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2018: 4554-4564.
[28] XIAO L, HUANG X, CHEN B L, et al. Label-Specific Document Representation for Multi-label Text Classification//Proc of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA: ACL, 2019: 466-475. |