[1] AGGARWAL C C, ZHAI C X. A Survey of Text Classification Algorithms // AGGARWAL C C, ZHAI C X, eds. Mining Text Data. Berlin, Germany: Springer, 2012: 163-222.
[2] WANG J, WANG Z Y, ZHANG D W, et al. Combining Knowledge with Deep Convolutional Neural Networks for Short Text Classification // Proc of the 26th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 2915-2921.
[3] WANG X, CHEN R H, JIA Y, et al. Short Text Classification Using Wikipedia Concept Based Document Representation // Proc of the International Conference on Information Technology and Applications. Washington, USA: IEEE, 2013: 471-474.
[4] LI X H, YAN L, QIN N, et al. A Novel Semi-Supervised Short Text Classification Algorithm Based on Fusion Similarity // Proc of the International Conference on Intelligent Computing. Berlin, Germany: Springer, 2017: 309-319.
[5] LEE J H, KO S, HAN Y S. SALNet: Semi-Supervised Few-Shot Text Classification with Attention-Based Lexicon Construction. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(14): 13189-13197.
[6] JOHNSON R, ZHANG T. Semi-Supervised Convolutional Neural Net-works for Text Categorization via Region Embedding // Proc of the 28th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2015: 919-927.
[7] CHEN L, ZHANG M C, FU Z B, et al. FLiText: A Faster and Lighter Semi-Supervised Text Classification with Convolution Networks // Proc of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2021: 2481-2491.
[8] WANG Y Q, WANG S, YAO Q M, et al. Hierarchical Heteroge-neous Graph Representation Learning for Short Text Classification // Proc of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2021: 3091-3101.
[9] LIU Y H, GUAN R C, GIUNCHIGLIA F, et al. Deep Attention Diffusion Graph Neural Networks for Text Classification // Proc of the Conference on Empirical Methods in Natural Language Proce-ssing. Stroudsburg, USA: ACL, 2021: 8142-8152.
[10] YAO L, MAO C S, LUO Y. Graph Convolutional Networks for Text Classification // Proc of the 33rd AAAI Conference on Artificial Intelligence and 31st Innovative Applications of Artificial Inte-lligence Conference and 9th AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 7370-7377.
[11] KIPF T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks[C/OL]. [2022-12-15]. https://arxiv.org/pdf/1609.02907.pdf.
[12] LIU X E, YOU X X, ZHANG X, et al. Tensor Graph Convolutional Networks for Text Classification. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 8409-8416.
[13] 宋泽宇,李旸,李德玉,等.融合标签关系的法律文本多标签分类方法.模式识别与人工智能. 2022, 35(2): 185-192.
(SONG Z Y, LI Y, LI D Y, et al. Multi-label Classification of Legal Text with Fusion of Label Relations. Pattern Recognition and Artificial Intelligence, 2022, 35(2): 185-192.)
[14] DING K Z, WANG J L, LI J D, et al. Be More with Less: Hypergraph Attention Networks for Inductive Text Classification // Proc of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2020: 4927-4936.
[15] YANG T C, HU L M, SHI C, et al. HGAT: Heterogeneous Graph Attention Networks for Semi-Supervised Short Text Classification. ACM Transactions on Information Systems, 2021, 39(3). DOI: 10.1145/3450352.
[16] LI Y J, ZEMEL R, BROCKSCHMIDT M, et al. Gated Graph Sequence Neural Networks[C/OL].[2022-12-15]. https://arxiv.org/pdf/1511.05493.pdf.
[17] SUN Y Z, HAN J W. Mining Heterogeneous Information Networks: A Structural Analysis Approach. ACM SIGKDD Explorations Newsletter, 2013, 14(2): 20-28.
[18] BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet Allocation. Journal of Machine Learning Research, 2003, 3: 993-1022.
[19] PANG B, LEE L. Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales // Proc of the 43rd Annual Meeting of Association for Computational Linguistics. Stroudsburg, USA: ACL, 2005: 115-124.
[20] PHAN X H, NGUYEN L M, HORIGUCHI S. Learning to Classify Short and Sparse Text & Web with Hidden Topics from Large-Scale Data Collections // Proc of the 17th International Conference on World Wide Web. New York, USA: ACM, 2008: 91-100.
[21] ZHANG X, ZHAO J B, LECUN Y. Character-Level Convolutional Networks for Text Classification // Proc of the 28th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2015: 649-657.
[22] DRUCKER H, WU D H, VAPNIK V N. Support Vector Machines for Spam Categorization. IEEE Transactions on Neural Networks, 1999, 10(5): 1048-1054.
[23] COVER T, HART P. Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
[24] LIU P F, QIU X P, HUANG X J. Recurrent Neural Network for Text Classification with Multi-task Learning // Proc of the 25th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 2873-2879.
[25] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of Tricks for Efficient Text Classification // Proc of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2017: 427-431.
[26] KIM Y. Convolutional Neural Networks for Sentence Classification // Proc of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2014: 1746-1751.
[27] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding // Proc of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies(Long and Shot Paper). Stroudsburg, USA: ACL, 2019: 4171-4186.
[28] CHEN J D, HU Y Z, LIU J P, et al. Deep Short Text Classification with Knowledge Powered Attention // Proc of the 33rd AAAI Conference on Artificial Intelligence and 31st Innovative Applications of Artificial Intelligence Conference and 9th AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 6252-6259.
[29] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[C/OL].[2022-12-15]. https://arxiv.org/pdf/1710.10903.pdf. |