[1] DOIGNON J P, FALMAGNE J C.Spaces for the Assessment of Knowledge. International Journal of Man-Machine Studies, 1985, 23(2): 175-196.
[2] 刘艳花,杨贯中.基于扩展知识空间理论的技能自适应测试过程.计算机系统应用, 2010, 19(7): 69-73, 59.
(LIU Y H, YANG G Z.Adaptive Test Process Based on Extension of Knowledge Space Theory. Computer Systems and Applications, 2010, 19(7): 69-73, 59.)
[3] 刘译蓬. 基于知识空间理论的认知诊断自适应测试选题方法研究.硕士学位论文.锦州:渤海大学, 2019.
(LIU Y P.Research on Selection Method of Cognitive Diagnosis Adaptive Test Based on Knowledge Space Theory. Master Dissertation. Jinzhou, China: Bohai University, 2019.)
[4] 谈成群,谢深泉.超文本教学系统中学生知识的自适应测评研究.计算机工程与设计, 2007, 28(20): 5072-5075.
(TAN C Q, XIE S Q.Adaptive Assessment of Students' Knowledge in Hypertext Tutoring System. Computer Engineering and Design, 2007, 28(20): 5072-5075.)
[5] FALMAGNE J C, DOIGNON J P. Learning Spaces: Interdisciplinary Applied Mathematics. Berlin, Germany: Springer, 2011.
[6] HELLER J.Generalizing Quasi-Ordinal Knowledge Spaces to Poly-tomous Items. Journal of Mathematical Psychology, 2021, 101. DOI: 10.1016/j.jmp.2021.102515.
[7] LIKERT R.A Technique for the Measurement of Attitudes. Archi-ves of Psychology, 1932, 22(140): 5-55.
[8] BERTRAM D.Likert Scales[R/OL].[2023-12-21].https://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/topic-dane-likert.pdf.
[9] FALMAGNE J C, DOIGNON J P.A Class of Stochastic Procedures for the Assessment of Knowledge. British Journal of Mathematical and Statistical Psychology, 1988, 41(1): 1-23.
[10] FALMAGNE J C, DOIGNON J P.A Markovian Procedure for Asse-ssing the State of a System. Journal of Mathematical Psychology, 1988, 32(3): 232-258.
[11] DOIGNON J P, FALMAGNE J C. Knowledge Spaces. Berlin, Ger-many: Springer, 1999.
[12] ALBERT D, LUKAS J.Knowledge Spaces: Theories, Empirical Research, and Applications. London, UK: Psychology Press, 1999.
[13] HELLER J, STEINER C, HOCKEMEYER C, et al. Competence-Based Knowledge Structures for Personalised Learning. Internatio-nal Journal on E-Learning, 2006, 5(1): 75-88.
[14] DOIGNON J P.Knowledge Spaces and Skill Assignments//FISCHER G H, LAMING D, eds. Contributions to Mathematical Psychology, Psychometrics, and Methodology. Berlin, Germany: Springer, 1994: 111-121.
[15] DÜNTSCH I, GEDIGA G. Skills and Knowledge Structures. Bri-tish Journal of Mathematical Psychology, 1995, 48(1): 9-27.
[16] MARTE B, STEINER C M, HELLER J, et al. Activity-and Taxonomy-Based Knowledge Representation Framework. International Journal of Knowledge and Learning, 2008, 4(2/3): 189-202.
[17] WILLE R. Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts//RIVAL I, ed. Ordered Sets. Berlin, Germany: Springer, 1982: 445-470.
[18] NICOTRA E F, SPOTO A. Connections and Dissimilarities among Formal Concept Analysis, Knowledge Space Theory and Cognitive Diagnostic Models in a Systemic Perspective//MINATI G, AB-RAM M R, PESSA E, eds. Systemics of Incompleteness and Quasi-Systems. Berlin, Germany: Springer, 2019: 235-241.
[19] RUSCH A, WILLE R. Knowledge Spaces and Formal Concept Ana-lysis//BOCK H H, POLASEK W, eds. Data Analysis and Information Systems: Statistical and Conceptual Approaches. Berlin, Germany: Springer, 1996: 427-436.
[20] ALBERT D, SCHREPP M.Structure and Design of an Intelligent Tutorial System Based on Skill Assignments//ALBERT D, LUKAS J, eds. Knowledge Spaces. London, UK: Psychology Press, 1999: 191-208.
[21] ARASASINGHAM R D, TAAGEPERA M, POTTER F, et al. Asse-ssing the Effect of Web-Based Learning Tools on Student Understanding of Stoichiometry Using Knowledge Space Theory. Journal of Chemical Education, 2005, 82(8): 1251-1262.
[22] FALMAGNE J C, KOPPEN M, VILLANO M, et al. Introduction to Knowledge Spaces: How to Build, Test, and Search Them. Psychological Review, 1990, 97(2): 201-224.
[23] KOPPEN M, DOIGNON J P.How to Build a Knowledge Space by Querying an Expert. Journal of Mathematical Psychology, 1990, 34(3): 311-331.
[24] KOPPEN M.Extracting Human Expertise for Constructing Know-ledge Spaces: An Algorithm. Journal of Mathematical Psychology, 1993, 44(3): 1-20.
[25] KAMBOURI M, KOPPEN M, VILLANO M, et al. Knowledge Asse-ssment: Tapping Human Expertise by the Query Routine. International Journal of Human-Computer Studies, 1994, 40(1): 119-151.
[26] DOWLING C E.Applying the Basis of a Knowledge Space for Controlling the Questioning of an Expert. Journal of Mathematical Psychology, 1993, 37(1): 21-48.
[27] SCHREPP M, HELD T.A Simulation Study Concerning the Effect of Errors on the Establishment of Knowledge Spaces by Querying Experts. Journal of Mathematical Psychology, 1995, 39(4): 376-382.
[28] COSYN E, THIERY N.A Practical Procedure to Build a Know-ledge Structure. Journal of Mathematical Psychology, 2000, 44(3): 383-407.
[29] STEFANUTTI L, KOPPEN M.A Procedure for the Incremental Construction of a Knowledge Space. Journal of Mathematical Psychology, 2003, 47(3): 265-277.
[30] ÜNLÜ A, SARGIN A.DAKS: An R Package for Data Analysis Me-thods in Knowledge Space Theory. Journal of Statistical Software, 2010, 37(2). DOI: 10.18637/jss.v037.i02.
[31] FLAMENT C.L'Analyse Booléenne de Questionnaire. Paris, Fran-ce: Mouton, 1976.
[32] BROWN F M. Boolean Reasoning. Boston, USA: Kluwer Acade-mic Publishers, 1990.
[33] VAN LEEUWE J F. Item Tree Analysis[J/OL].[2023-12-21]. https://psycnet.apa.org/record/1975-08628-001.
[34] SCHREPP M.Explorative Analysis of Empirical Data by Boolean Analysis of Questionaires. Zeitschrift für Psychologie, 2002, 210(2): 99-109.
[35] THEUNS P.A Dichotomization Method for Boolean Analysis of Quan-tifiable Co-occurrence Data//FISCHER G H, LAMING D, eds. Contributions to Mathematical Psychology Psychometrics, and Methodology. Berlin, Germany: Springer, 1994: 389-402.
[36] THEUNS P.Building a Knowledge Space via Boolean Analysis of Co-occurrence Data//DOWLING C E, ROBERTS F S, THEUNS P, eds. Recent Progress in Mathematical Psychology. London, UK: Psychology Press, 1998: 173-194.
[37] SCHREPP M.On the Empirical Construction of Implications Between Bi-valued Test Items. Mathematical Social Sciences, 1999, 38(3): 361-375.
[38] SARGIN A, ÜNLÜ A.Inductive Item Tree Analysis: Corrections, Improvements, and Comparisons. Mathematical Social Sciences, 2009, 58(3): 376-392.
[39] SCHREPP M.Extracting Knowledge Structures from Observed Data. British Journal of Mathematical and Statistical Psychology, 1999, 52(2): 213-224.
[40] DE CHIUSOLE D, STEFANUTTI L, SPOTO A.A Class of k-Mo-des Algorithms for Extracting Knowledge Structures from Data. Behavior Research Methods, 2017, 49(4): 1212-1226.
[41] HUANG Z X, NG M K.A Fuzzy k-Modes Algorithm for Clustering Categorical Data. IEEE Transactions on Fuzzy Systems, 1999, 7(4): 446-452.
[42] CHATURVEDI A, GREEN P E, CAROLL J D.k-Modes Clus-tering. Journal of Classification, 2001, 18(1): 35-55.
[43] SPOTO A, STEFANUTTI L, VIDOTTO G.Knowledge Space Theo-ry, Formal Concept Analysis, and Computerized Psychological Assessment. Behavior Research Methods, 2010, 42(1): 342-350.
[44] SPOTO A, STEFANUTTI L, VIDOTTO G.On the Unidentifiability of a Certain Class of Skill Map-Based Probabilistic Knowledge Structures. Journal of Mathematical Psychology, 2012, 56(4), 248-255.
[45] SUCK R.Skills First-An Alternative Approach to Construct Know-ledge Spaces. Journal of Mathematical Psychology, 2021, 101. DOI: 10.1016/j.jmp.2021.102517.
[46] SPOTO A, STEFANUTTI L, VIDOTTO G.An Iterative Procedure for Extracting Skill Maps from Data. Behavior Research Methods, 2016, 48(2): 729-741.
[47] 周银凤,李进金,冯丹露,等.形式背景下的学习路径与技能评估.模式识别与人工智能, 2021, 34(12): 1069-1084.
(ZHOU Y F, LI J J, FENG D L, et al. Learning Paths and Skills Assessment in Formal Context. Pattern Recognition and Artificial Intelligence, 2021, 34(12): 1069-1084.)
[48] 周银凤,李进金.形式背景下的技能约简与评估.计算机科学与探索, 2022, 16(3): 692-702.
(ZHOU Y F, LI J J.Skill Reduction and Assessment in Formal Context. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 692-702.)
[49] SUN W, LI J J, GE X, et al. Knowledge Structures Delineated by Fuzzy Skill Maps. Fuzzy Sets and Systems, 2021, 407: 50-66.
[50] MARTIN J L, WILEY J A.Algebraic Representations of Beliefs and Attitudes II: Microbelief Models for Dichotomous Belief Data. Sociological Methodology, 2000, 30(1): 123-164.
[51] SCHREPP M.About the Connection Between Knowledge Structures and Latent Class Models. Methodology, 2005, 1(3): 92-102.
[52] ÜNLÜ A.Estimation of Careless Error and Lucky Guess Probabilities for Dichotomous Test Items: A Psychometric Application of a Biometric Latent Class Model with Random Effects. Journal of Mathematical Psychology, 2006, 50(3): 309-328.
[53] TOIVONEN H.Sampling Large Databases for Association Rules//Proceedings of the 22nd International Conference on Very Large Data Bases. San Francisco, USA: Morgan Kaufmann Publishers, 1996: 134-145.
[54] HÁJEK P, HAVEL I, CHYTIL M. The GUHA Method of Automatic Hypotheses Determination. Computing, 1966, 1(4): 293-308.
[55] HÁJEK P, HAVRÁNEK T. On Generation of Inductive Hypotheses. International Journal of Man-Machine Studies, 1977, 9(4): 415-438.
[56] ÜNLÜ A, MALIK W A.Interactive Glyph Graphics of Multivariate Data in Psychometrics. Methodology, 2011, 7(4): 134-144.
[57] ÜNLÜ A, SARGIN A.Interactive Visualization of Assessment Data: The Software Package Mondrian. Applied Psychological Mea-surement, 2009, 33(2): 148-156.
[58] ÜNLÜ A, SARGIN A.Mosaic Displays for Combinatorial Psychometric Models//CERCHIELLO P, TARANTOLA C. Proc of the Classification and Data Analysis Group. Pavia, Italy: Pavia University Press, 2011: 52.
[59] DOWLING C E.On the Irredundant Generation of Knowledge Spaces. Journal of Mathematical Psychology, 1993, 37(1): 49-62.
[60] SCHREPP M.A Generalization of Knowledge Space Theory to Pro-blems with More Than Two Answer Alternatives. Journal of Mathematical Psychology, 1997, 41(3): 237-243.
[61] BARTL E, BELOHLAVEK R.Knowledge Spaces with Graded Know-ledge States. Information Sciences, 2011, 181(8): 1426-1439.
[62] STEFANUTTI L, ANSELMI P, DE CHIUSOLE D, et al. On the Polytomous Generalization of Knowledge Space Theory. Journal of Mathematical Psychology, 2020, 94. DOI: 10.1016/j.jmp.2019.102306.
[63] STEFANUTTI L.On the Assessment of Procedural Knowledge: From Problem Spaces to Knowledge Spaces. British Journal of Mathema-tical and Statistical Psychology, 2019, 72(2): 185-218.
[64] WANG B, LI J J, SUN W, et al. Notes on the Polytomous Gene-ralization of Knowledge Space Theory. Journal of Mathematical Psychology, 2022, 109. DOI: 10.1016/j.jmp.2022.102672.
[65] WANG B, LI J J, SUN W.CD-Polytomous Knowledge Spaces and Corresponding Polytomous Surmise Systems. British Journal of Mathe-matical and Statistical Psychology, 2023, 76(1): 87-105.
[66] GE X.On Galois Connections Between Polytomous Knowledge Stru-ctures and Polytomous Attributions. Journal of Mathematical Psychology, 2022, 110. DOI: 10.1016/j.jmp.2022.102708.
[67] 孙晓燕,李进金.基于程序性知识学习的项目状态转移函数与多分知识结构.模式识别与人工智能, 2022, 35(3): 223-242.
(SUN X Y, LI J J.Item State Transition Functions and Polytomous Knowledge Structures Based on Procedural Knowledge Learning. Pattern Recognition and Artificial Intelligence, 2022, 35(3): 223-242.)
[68] SUN W, LI J J, LIN F C, et al. Constructing Polytomous Know-ledge Structures from Fuzzy Skills. Fuzzy Sets and Systems, 2023, 461. DOI: 10.1016/j.fss.2022.09.003.
[69] DE CHIUSOLE D, SPOTO A, STEFANUTTI L.Extracting Partially Ordered Clusters from Ordinal Polytomous Data. Behavior Research Methods, 2020, 52: 503-520.
[70] DOIGNON J P, FALMAGNE J C. Knowledge Assessment: A Set-Theoretic Framework[M/OL].[2023-12-21].https://books.google.co.uk/books?redir_esc=y&hl=zh-CN&id=JmkoAQAAIAAJ&focus=searchwithinvolume&q=Knowledge+Assessment.
[71] DOIGNON J P.Probabilistic Assessment of Knowledge//ALBERT D, ed. Knowledge Structures. Berlin, Germany: Springer, 1994: 1-57.
[72] FALMAGNE J C.A Latent Trait Theory via a Stochastic Learning Theory for a Knowledge Space. Psychometrika, 1989, 54(2): 283-303.
[73] FALMAGNE J C. Probabilistic Knowledge Spaces: A Review//ROBERTS F, ed. Applications of Combinatorics and Graph Theory to the Biological and Social Sciences. Berlin, Germany: Springer, 1989: 95-101.
[74] COSYN E, UZUN H B.Note on Two Necessary and Sufficient Axioms for a Well-Graded Knowledge Space. Journal of Mathematical Psychology, 2009, 53(1): 40-42.
[75] DOIGNON J P. Learning Spaces, How to Build Them//Proc of the 12th International Conference on Formal Concept Analysis. Berlin, Germany: Springer, 2014: 1-14.
[76] DOIGNON J P, FALMAGNE J C.Knowledge Space and Learning Spaces[C/OL].[2023-12-23].https://arxiv.org/abs/1511.06757.
[77] JAMISON R E.Copoints in Antimatroids[C/OL].[2023-12-23].https://books.google.co.uk/books/about/Proceedings_of_the_Eleventh_Southeastern.html?id=tj2jygAACAAJ&redir_esc=y.
[78] JAMISON R E.A Perspective on Abstract Convexity: Classifying Alignments by Varieties//KAY D C, BREEN M, eds. Convexity and Related Combinatorial Geometry. New York, USA: Marcel Dekker, 1982: 113-150.
[79] KOPPEN M.On Alternative Representations for Knowledge Spaces. Mathematical Social Sciences, 1998, 36(2): 127-143.
[80] OVCHINNIKOV S V.Well-Graded Spaces of Valued Sets. Discrete Mathematics, 2002, 245(1/2/3): 217-233.
[81] BOGART K P.Preference Structures I: Distances Between Transitive Preference Relations. The Journal of Mathematical Sociology, 1973, 3(1): 49-67.
[82] SUCK R.Parsimonious Set Representations of Orders, A Generalization of the Interval Order Concept, and Knowledge Spaces. Discrete Applied Mathematics, 2003, 127(2): 373-386.
[83] EPPSTEIN D, FALMAGNE J C, OVCHINNIKOV S. Media and Well-Graded Families//EPPSTEN D, FALMAGNE J C, OVCHI-NNIKOV S, eds. Media Theory: Interdisciplinary Applied Mathematics. Berlin, Germany: Springer, 2008: 49-71.
[84] EPPSTEIN D, FALMAGNE J C, UZUN H.On Verifying and Engineering the Wellgradedness of a Union-Closed Family. Journal of Mathematical Psychology, 2009, 53(1): 34-39.
[85] OVCHINNIKOV S V.Well-Graded Families of Fuzzy Sets//Proc of the Annual Conference of the North American Fuzzy Information Processing Society Held Jointly with 5th World Conference on Soft Computing. Washington, USA: IEEE, 2015. DOI: 10.1109/NAFIPS-WConSC.2015.7284159.
[86] MATAYOSHI J.On the Properties of Well-Graded Partially Union-Closed Families. Journal of Mathematical Psychology, 2017, 80: 15-21.
[87] GIARLOTTA A, WATSON S.Well-Graded Families of NaP-Pre-ferences. Journal of Mathematical Psychology, 2017, 77: 21-28.
[88] DOIGNON J P, FALMAGNE J C.Well-Graded Families of Relations. Discrete Mathematics, 1997, 173(1/2/3): 35-44.
[89] MATAYOSHI J.Well-Graded Families and the Union-Closed Sets Conjecture. The Electronic Journal of Combinatorics, 2020, 27(1). DOI: https://doi.org/10.37236/8380.
[90] SUN W, LI J J, HE Z R, et al. Well-Graded Polytomous Know-ledge Structures. Journal of Mathematical Psychology, 2023, 114. DOI: 10.1016/j.jmp.2023.102770.
[91] WANG B, LI J J.Exploring Well-Gradedness in Polytomous Know-ledge Structures. Journal of Mathematical Psychology, 2024, 119. DOI: 10.1016/j.jmp.2024.102840.
[92] HELLER J.A Formal Framework for Characterizing Querying Algorithms. Journal of Mathematical Psychology, 2004, 48(1): 1-8.
[93] MÜLLER C E. A Procedure for Facilitating an Expert's Judgments on a Set of Rules//ROSKAM E E, ed. Mathematical Psychology in Progress. Berlin, Germany: Springer, 1989: 157-170.
[94] KOPPEN M G M. Ordinal Data Analysis: Biorder Representation and Knowledge Spaces. Nijmegen, Holland: Katholieke Universiteit Nijmegen, 1989.
[95] DAVEY B A, PRIESTLEY H A.Introduction to Lattices and Order. Cambridge, UK: Cambridge University Press, 1990.
[96] EDELMAN P H, JAMISON R E.The Theory of Convex Geometries. Geometriae Dedicata, 1985, 19(3): 247-270.
[97] VAN DE VEL M. The Theory of Convex Structures. Amsterdam, Holland: North-Holland Publishing, 1993.
[98] SCHREPP M, HELD T, ALBERT D.Component-Based Construction of Surmise Relations for Chess Problems//ALBERT D, LUKAS J, eds. Knowledge Spaces. London, UK: Psychology Press, 1999: 53-78.
[99] 陈惠琴,李进金,林宇静,等.技能背景下学习空间的判别方法和技能评估.南京大学学报(自然科学), 2023, 59(1): 107-119.)
(CHEN H Q, LI J J, LIN Y J, et al. Discrimination Method of Learning Space and Skills Assessment in Skill Context. Journal of Nanjing University(Natural Science), 2023, 59(1): 107-119.)
[100] GE X.On the Correspondence Between Granular Polytomous Spaces and Polytomous Surmising Functions. Journal of Mathematical Psychology, 2023, 113. DOI: 10.1016/j.jmp.2022.102743.
[101] BRANDT S, ALBERT D, HOCKEMEYER C.Surmise Relations Between Tests: Preliminary Results of the Mathematical Mode-ling. Electronic Notes in Discrete Mathematics, 1999, 2: 10-24.
[102] BRANDT S, ALBERT D, HOCKEMEYER C.Surmise Relations Between Tests-Mathematical Considerations. Discrete Applied Mathematics, 2003, 127(2): 221-239.
[103] ÜNLÜ A, BRANDT S, ALBERT D. Test Surmise Relations, Test Knowledge Structures, and Their Characterizations. Augsburg, Germany: Universität Augsburg, 2007.
[104] KOROSSY K.Modeling Knowledge as Competence and Perfor-mance//ALBERT D, LUKAS J, eds. Knowledge Spaces. London, UK: Psychology Press, 1999: 115-144.
[105] HELLER J, AUGUSTIN T, HOCKEMEYER C, et al. Recent Developments in Competence-Based Knowledge Space Theory//FALMAGNE J C, ALBERT D, DOBLE C, et al., eds. Know-ledge Spaces: Applications in Education. Berlin, Germany: Springer, 2013: 243-286.
[106] ROZEBOOM W, LORD F M, NOVICK M R, et al. Statistical Theories of Mental Test Scores. American Educational Research Journal, 1969, 6(1): 112-116.
[107] WAINER W, MESSICK S.Principals of Modern Psychological Measurement: A Festschrift for Frederic M. Lord. London, UK: Routledge, 2012.
[108] WAINER H, DORANS N J, FLAUGHER R, et al. Computerized Adaptive Testing: A Primer. London, UK: Routledge, 2000.
[109] WEISS D J, BOCK R D.New Horizons in Testing: Latent Trait Test Theory and Computerized Adaptive Testing. New York, USA: Academic Press, 1983.
[110] MARSHALL S P.Sequential Item Selection: Optimal and Heuristic Policies. Journal of Mathematical Psychology, 1981, 23(2): 134-152.
[111] ZHOU Y F, LI J J, WANG H K, et al. Skills and Fuzzy Know-ledge Structures. Journal of Intelligent and Fuzzy Systems, 2022, 42(3): 2629-2645.
[112] 李俊杰,杨贯中.基于技能的知识结构.微计算机信息, 2012, 28(2): 77-78, 58.
(LI J J, YANG G Z.Skill-Based Knowledge Structure. Microcomputer Information, 2012, 28(2): 77-78, 58.)
[113] GE X, LI J J.A Note on the Separability of Items in Knowledge Structures Delineated by Skill Multimaps. Journal of Mathematical Psychology, 2020, 98. DOI: 10.1016/j.jmp.2020.102427.
[114] HELLER J, ANSELMI P, STEFANUTTI L, et al. A Necessary and Sufficient Condition for Unique Skill Assessment. Journal of Mathematical Psychology, 2017, 79: 23-28.
[115] XU B C, LI J J.The Inclusion Degrees of Fuzzy Skill Maps and Knowledge Structures. Fuzzy Sets and Systems, 2023, 465. DOI: 10.1016/j.fss.2023.108540.
[116] 孙文. 模糊集在知识空间理论中的应用.博士学位论文.汕头:汕头大学, 2022.
(SUN W.Some Applications of Fuzzy Sets in Knowledge Space Theory. Ph.D. Dissertation. Shantou, China: Shantou University, 2022.)
[117] ANSELMI P, HELLER J, STEFANUTTI L, et al. Constructing, Improving, and Shortening Tests for Skill Assessment. Journal of Mathematical Psychology, 2022, 106. DOI: 10.1016/j.jmp.2021.102621.
[118] ANSELMI P, HELLER J, STEFANUTTI L, et al. Constructing Tests for Skill Assessment with Competence-Based Test Development. British Journal of Mathematical and Statistical Psychology, 2024. DOI: 10.1111/bmsp.12335.
[119] XIE X X, XU W H, LI J J.A Novel Concept-Cognitive Learning Method: A Perspective from Competences. Knowledge-Based Systems, 2023, 265. DOI: 10.1016/j.knosys.2023.110382.
[120] XU F F, MIAO D Q, YAO Y Y, et al. Analyzing Skill Sets with Or-Relation Tables in Knowledge Spaces//Proc of the 8th IEEE International Conference on Cognitive Informatics. Washington, USA: IEEE, 2009: 174-180.
[121] 高纯,王睿智.知识空间理论析取模型下最小技能集的生成.计算机科学与探索, 2010, 4(12): 1109.
(GAO C, WANG R Z.The Formation of Minimal Skill Set in Disjunctive Model of Knowledge Space Theory. Journal of Frontiers of Computer Science and Technology, 2010, 4(12): 1109-1114.)
[122] LIU G L.Rough Set Approaches in Knowledge Structures. International Journal of Approximate Reasoning, 2021, 138: 78-88.
[123] 杨桃丽,李进金,李招文,等.基于技能构建知识结构的两种变精度模型与技能子集约简.模式识别与人工智能, 2022, 35(8): 671-687.
(YANG T L, LI J J, LI Z W, et al. Two Kinds of Variable Precision Models Based on Skill for Constructing Knowledge Structures and Skill Subset Reduction. Pattern Recognition and Artificial Intelligence, 2022, 35(8): 671-687.)
[124] GEDIGA G, DÜNTSCH I. Skill Set Analysis in Knowledge Structures. British Journal of Mathematical and Statistical Psychology, 2002, 55(2): 361-384.
[125] HELLER J, REPITSCH C.Distributed Skill Functions and the Meshing of Knowledge Structures. Journal of Mathematical Psychology, 2008, 52(3): 147-157.
[126] HELLER J, ÜNLÜ A, ALBERT D.Skills, Competencies and Knowledge Structures//FALMAGNE J C, ALBERT D, DOBLE C, et al., eds. Knowledge Spaces: Applications in Education. Berlin, Germany: Springer, 2013: 229-242.
[127] HE Z R, SUN W.Competence-Based Skill Functions and Minimal Sets of Skills. Symmetry, 2022, 14(5). DOI: 10.3390/sym14050884.
[128] STEFANUTTI L, DE CHIUSOLE D.On the Assessment of Lear-ning in Competence Based Knowledge Space Theory. Journal of Mathematical Psychology, 2017, 80: 22-32.
[129] KOROSSY K.Extending the Theory of Knowledge Spaces: A Com-petence-Performance Approach. Zeitschrift Für Psychologie, 1997, 205(1): 53-82.
[130] KOROSSY K.Modellierung Von Wissen als Kompetenz und Performanz[C/OL].[2023-12-07].https://www.researchgate.net/publication/241027818.
[131] CHOMSKY N.Aspects of the Theory of Syntax. Cambridge, USA: MIT Press, 1965.
[132] KICKMEIER-RUST M D, ALBERT D, STEINER C. Lifelong Competence Development: On the Advantages of Formal Competence-Performance Modeling[C/OL].[2023-12-07]. https://core.ac.uk/download/pdf/55533858.pdf.
[133] VILLANO M. Probabilistic Student Models: Bayesian Belief Networks and Knowledge Space Theory//Proc of the International Conference on Intelligent Tutoring Systems. Berlin, Germany: Springer, 1992: 491-498.
[134] STEFANUTTI L, ROBUSTO E.Recovering a Probabilistic Know-ledge Structure by Constraining its Parameter Space. Psychometrika, 2009, 74(1): 83-96.
[135] HELLER J, WICKELMAIER F.Minimum Discrepancy Estimation in Probabilistic Knowledge Structures. Electronic Notes in Discrete Mathematics, 2013, 42: 49-56.
[136] ANSELMI P, STEFANUTTI L, DE CHIUSOLE D, et al. The Assessment of Knowledge and Learning in Competence Spaces: The Gain-Loss Model for Dependent Skills. British Journal of Mathematical and Statistical Psychology, 2017, 70(3): 457-479.
[137] SPOTO A, STEFANUTTI L.On the Necessary and Sufficient Con-ditions for Delineating Forward-and Backward-Graded Knowledge Structures from Skill Maps. Journal of Mathematical Psychology, 2020, 99. DOI: 10.1016/j.jmp.2020.102451.
[138] MATAYOSHI J, UZUN H.Learning, Forgetting,the Correlation of Knowledge in Knowledge Space Theory. Journal of Mathe-matical Psychology, 2022, 109. DOI: 10.1016/j.jmp.2022.102674.
[139] JUNKER B W, SIJTSMA K.Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric Item Response Theory. Applied Psychological Measurement, 2001, 25(3): 258-272.
[140] MARIS E.Estimating Multiple Classification Latent Class Models. Psychometrika, 1999, 64(2): 187-212.
[141] FALMAGNE J C. Finite Markov Learning Models for Knowledge Structures//FISCHER G H, LAMING D, eds. Contributions to Mathematical Psychology, Psychometrics, and Methodology. Berlin, Germany: Springer, 1994: 75-89.
[142] FRIES S.Empirical Validation of a Markovian Learning Model for Knowledge Structures. Journal of Mathematical Psychology, 1997, 41(1): 65-70.
[143] KEMENY J G, SNELL J L. Finite Markov Chains: With a New Appendix "Generalization of a Fundamental Matrix". Berlin, Germany: Springer, 1976.
[144] PARZEN E. Stochastic Processes. San Francisco, USA: Holden-Day, 1962.
[145] ROBUSTO E, STEFANUTTI L, ANSELMI P.The Gain-Loss Model: A Probabilistic Skill Multimap Model for Assessing Learning Processes. Journal of Educational Measurement, 2010, 47(3): 373-394.
[146] STEFANUTTI L, ANSELMI P, ROBUSTO E.Assessing Learning Processes with the Gain-Loss Model. Behavior Research Methods, 2010, 43: 66-76.
[147] CORBETT A T, ANDERSON J R.Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge. User Modeling and User-Adapted Interaction, 1994, 4(4): 253-278.
[148] YUDELSON M V, KOEDINGER K R, GORDON G J. Individualized Bayesian Knowledge Tracing Models//Proc of the 16th International Conference on Artificial Intelligence in Education. Berlin, Germany: Springer, 2013: 171-180.
[149] ANSELMI P, ROBUSTO E, STEFANUTTI L.A Procedure for Iden-tifying the Best Skill Multimap in the Gain-Loss Model. Electronic Notes in Discrete Mathematics, 2013, 42: 9-16.
[150] DE CHIUSOLE D, ANSELMI P, STEFANUTTI L, et al. The Gain-Loss Model: Bias of the Parameter Estimates. Electronic Notes in Discrete Mathematics, 2013, 42: 33-40.
[151] ANDERSEN E B.Latent Structure Analysis: A Survey. Scandinavian Journal of Statistics, 1982, 9(1): 1-12.
[152] HAGENAARS J A, MCCUTCHEON A L. Applied Latent Class Analysis. Cambridge, UK: Cambridge University Press, 2002.
[153] VERMUNT J K, MAGIDSON J. "Latent Class Analysis". The Sage Encyclopedia of Social Sciences Research Methods, London, England: Sage Publications, 2004: 549-553.
[154] HEINEN T. Latent Class and Discrete Latent Trait Models: Similarities and Differences. London, UK: Sage Publications, 1996.
[155] SCHREPP M.Properties of the Correlational Agreement Coefficient: A Comment to Ünlü and Albert(2004). Mathematical Social Sciences, 2006, 51(1): 117-123.
[156] VERMUNT J K. Log-Linear Models for Event Histories. Thousand Oaks, USA: Sage Publications, 1997.
[157] MACDONALD I L, ZUCCHINI W. Hidden Markov Models and Other Types of Models for Discrete-Valued Time Series. Boca Raton, USA: Chapman and Hall, 1997.
[158] STEFANUTTI L, DE CHIUSOLE D, ANSELMI P, et al. Extending the Basic Local Independence Model to Polytomous Data. Psychometrika, 2020, 85(3): 684-715.
[159] GANTER B, BEDEK M, HELLER J, et al. An Invitation to Know-ledge Space Theory//Proc of the 14th International Conference on Formal Concept Analysis. Berlin, Germany: Springer, 2017: 3-19.
[160] 李进金,孙文.知识空间,形式背景和知识基.西北大学学报(自然科学版), 2019, 49(4): 517-526.
(LI J J, SUN W. KnowledgeSpace, Formal Context and Know-ledge Base. Journal of Northwest University (Natural Science Edi-tion), 2019, 49(4): 517-526.)
[161] OJEDA-HERNÁNDEZ M, PÉREZ-GÁMEZ F, LÓPEZ-RODRÍ-GUEZ D, et al. Minimal Generators from Positive and Negative Attributes: Analysing the Knowledge Space of a Mathematics Course. International Journal of Computational Intelligence Systems, 2022, 15. DOI: 10.1007/s44196-022-00123-3.
[162] 林宇静,李进金,陈惠琴.形式背景下的多分知识结构与学习路径.山东大学学报(理学版), 2023, 58(9): 114-126.
(LIN Y J, LI J J, CHEN H Q.Polytomous Knowledge Structure and Learning Path in Formal Context. Journal of Shandong University(Natural Science), 2023, 58(9): 114-126.)
[163] 冯丹露,李进金,李招文,等.模糊形式背景下的技能层约简与前级 (后级)知识结构的充要条件.模式识别与人工智能, 2023, 36(5): 383-406.
(FENG D L, LI J J, LI Z W,et al. Skill Level Reduction and Necessary and Sufficient Conditions of Forward-Graded(Backward-Graded) Knowledge Structure in Fuzzy Formal Context. Pa-ttern Recognition and Artificial Intelligence, 2023, 36(5): 383-406.)
[164] 王大利,许晴媛,李进金,等.知识点网络下的知识评估和学习路径选择.南京大学学报(自然科学), 2023, 59(4): 629-643.
(WANG D L, XU Q Y, LI J J, et al. Knowledge Assessment and Learning Paths Selection under Knowledge-Point Network. Journal of Nanjing University(Natural Science), 2023, 59(4): 629-643.)
[165] 于亚琪,赵思雨,魏玲.面向属性概念格的概念约简及其在知识空间理论中的应用.西北大学学报(自然科学版), 2023, 53(5): 812-820.
(YU Y Q, ZHAO S Y, WEI L.Concept Reduction of Property-Oriented Concept Lattices and Its Application in Knowledge Space Theory. Journal of Northwest University(Natural Science Edition), 2023, 53(5): 812-820.)
[166] PAWLAK Z. RoughSets. International Journal of Computer and Information Sciences, 1982, 11(5): 341-356.
[167] YAO Y Y, MIAO D Q, XU F F. Granular Structures and Appro-ximations in Rough Sets and Knowledge Spaces//ABRAHAM A, FALCÓN R, BELLO R, eds. Rough Set Theory: A True Landmark in Data Analysis. Berlin, Germany: Springer, 2009: 71-84.
[168] 王国胤,姚一豫,于洪.粗糙集理论与应用研究综述.计算机学报, 2009, 32(7): 1229-1246.
(WANG G Y, YAO Y Y, YU H.A Survey on Rough Set Theory and Applications. Chinese Journal of Computers, 2009, 32(7): 1229-1246.)
[169] 智慧来,李金海.面向知识结构分析的模糊概念格模型[J/OL].[2023-12-21]. http://www.jos.org.cn/1000-9825/6899.html.
(ZHI H L, LI J H. Oriented Fuzzy Concept Lattice Models for Knowledge Structure Analysis[J/OL].[2023-12-21]. http://www.jos.org.cn/1000-9825/6899.html
[170] XU B C, LI J J, SUN W, et al. On Delineating Forward-and Backward-Graded Knowledge Structures from Fuzzy Skill Maps. Journal of Mathematical Psychology, 2023, 117. DOI: 10.1016/j.jmp.2023.102819.
[171] DOBLE C, MATAYOSHI J, COSYN E, et al. A Data-Based Simu-lation Study of Reliability for an Adaptive Assessment Based on Knowledge Space Theory. International Journal of Artificial Inte-lligence in Education, 2019, 29(2): 258-282.
[172] DOWLING C E, HOCKEMEYER C, LUDWIG A H. Adaptive Assessment and Training Using the Neighbourhood of Knowledge States//Proc of the 3rd International Conference on Intelligent Tutoring Systems. Berlin, Germany: Springer, 1996: 578-586.
[173] NWANA H S. Intelligent Tutoring Systems: An Overview. Artificial Intelligence Review, 1990, 4(4): 251-277.
[174] HOCKEMEYER C, HELD T, ALBERT D. RATH-A Relational Adaptive Tutoring Hypertext WWW-Environment Based on Know-ledge Space Theory//Proc of the 4th International Conference on Computer Aided Learning and Instruction. Berlin, Germany: Springer, 1998: 417-423.
[175] CONLAN O, HOCKEMEYER C, WADE V, et al. Metadata Driven Approaches to Facilitate Adaptivity in Personalized eLearning Systems. The Journal of Information and Systems in Education, 2002, 1(1): 38-44.
[176] DE CHIUSOLE D, STEFANUTTI L, ANSELMI P, et al. Stat-Knowlab. Assessment and Learning of Statistics with Competence-based Know-ledge Space Theory. International Journal of Artificial Intelligence in Education, 2020, 30(4): 668-700.
[177] FANG Y, REN Z, HU X, et al. A Meta-Analysis of the Effectiveness of ALEKS on Learning. Educational Psychology, 2019, 39(10): 1278-1292.
[178] DE CHIUSOLE D, STEFANUTTI L, ANSELMI P, et al. Testing the Actual Equivalence of Automatically Generated Items. Behavior Research Methods, 2018, 50(1): 39-56.
[179] FALMAGNE J C, COSYN E, DOBLE C, et al. Assessing Mathematical Knowledge in a Learning Space: Validity and/or Reliability[C/OL].[2023-12-21]. https://www.stat.cmu.edu/~brian/NCME07/Validity_in_L_Spaces.pdf
[180] DIBELLO L V, STOUT W. Guest Editors' Introduction and Overview: IRT-Based Cognitive Diagnostic Models and Related Me-thods. Journal of Educational Measurement, 2007, 44 (4): 285-291.
[181] WESIAK G. Ordering Inductive Reasoning Tests for Adaptive Know-ledge Assessments: An Application of Surmise Relations Between Tests. Steiermark, Austria: University of Graz, 2003.
[182] TAAGEPERA M, POTTER F, MILLER G E, et al. Mapping Stu-dents' Thinking Patterns by the Use of the Knowledge Space Theory. International Journal of Science Education, 1997, 19(3): 283-302.
[183] TAAGEPERA M, NOORI S. Mapping Students' Thinking Patterns in Learning Organic Chemistry by the Use of Knowledge Space Theory. Journal of Chemical Education, 2000, 77(9). DOI: 10.1021/ED077P1224.
[184] ARASASINGHAM R D, TAAGEPERA M, POTTER F, et al. Using Knowledge Space Theory to Assess Student Understanding of Stoichiometry. Journal of Chemical Education, 2004, 81(10): 1517-1523.
[185] TóTH Z. Mapping Students' Knowledge Structure in Understan-ding Density, Mass Percent, Molar Mass, Molar Volume and Their Application in Calculations by the Use of the Knowledge Space Theory. Chemistry Education Research and Practice, 2007, 8(4): 376-389.
[186] TóTH Z, SEBESTYéN A. Relationship Between Students' Know-ledge Structure and Problem-Solving Strategy in Stoichiometric Problems Based on the Chemical Equation. International Journal of Physics and Chemistry Education, 2009, 1(1): 8-20.
[187] TAAGEPERA M, ARASASINGHAM R D. Using Knowledge Space Theory to Assess Student Understanding of Chemistry // FALMAGNE J C, ALBERT D, DOBLE C, et al., eds. Knowledge Spaces: Applications in Education. Berlin, Germany: Springer, 2013: 115-128.
[188] SEGEDINAC M T, HORVAT S, RODIC┴' D, et al. Using Know-ledge Space Theory to Compare Expected and Real Knowledge Spaces in Learning Stoichiometry. Chemistry Education Research and Practice, 2018, 19(3): 670-680.
[189] TóTH Z, KISS E. Using Particulate Drawings to Study 13-17 Year Olds' Understanding of Physical and Chemical Composition of Matter as Well as the State of Matter. Practice and Theory in Systems of Education, 2006, 1(1): 109-125.
[190] VAARIK A, TAAGEPERA M, TAMM L. Following the Logic of Student Thinking Patterns about Atomic Orbital Structures. Journal of Baltic Science Education, 2008, 7(1): 27-36.
[191] ALBERT D, HOCKEMEYER C. Adaptive and Dynamic Hypertext Tutoring Systems Based on Knowledge Space Theory[C/OL]. [2023-12-21]. https://telearn.hal.science/file/index/docid/190402/filename/Albert-Dietrich-1997.pdf.
[192] 何庆辉,麦裕华.基于知识空间理论的高一学生离子反应关键学习路径.化学教学, 2018(7): 12-17.
(HE Q H, MAI Y H. Key Study Path of Ionic Reactions for Grade 1 High School Students Based on Knowledge Space Theory. Education in Chemistry, 2018(7): 12-17.)
[193] 麦裕华,何庆辉,肖 信.基于知识空间理论的高中生科学原理学习分析——以氧化还原反应为例.化学教育(中英文), 2018, 39(19): 34-40.
(MAI Y H, HE Q H, XIAO X. Analysis of Senior High School Students' Learning of Scientific Principles Based on the Know-ledge Space Theory: A Case of Oxidation-Reduction Reaction. Chinese Journal of Chemical Education, 2018, 39(19): 34-40.)
[194] 陈文梅,陈 博,田 欣,等.应用知识空间理论探究中学生的关键学习路径——以九年级“化学方程式”学习为例.化学教学, 2022(9): 24-28.
(CHEN W M, CHEN B, TIAN X, et al. Exploring Middle School Students' Key Learning Path by Utilizing Knowledge Space Theory: Take the Study of Chemical Equations in Grade 9 as an Example. Education in Chemistry, 2022(9): 24-28.)
[195] 陈东晓,李进金.基于知识空间理论的微积分关键学习路径描述.黑龙江教育(高教研究与评估), 2023(4): 28-31.
(CHEN D X, LI J J. Description of Calculus Key Learning Path Based on Knowledge Space Theory. Heilongjiang Education(Research and Evaluation of Higher Education), 2023(4): 28-31.)
[196] 孙 波,傅 骞.扩展知识空间理论研究.中国电化教育, 2004(4): 74-77.
(SUN B, FU Q. Research on the Extension of Knowledge Space Theory. China Educational Technology, 2004(4): 74-77.)
[197] 周 弦.ICAI 中基于知识空间理论的知识结构模型.硕士学位论文.湘潭:湘潭大学, 2005.
(ZHOU X. A Knowledge Structure Model Based on Knowledge Space Theory in ICAI. Master Dissertation. Xiangtan, China: Xiangtan University, 2005.)
[198] 周 弦,谢深泉.基于知识空间理论的自适应测试过程.计算机应用, 2007, 27(S1): 68-69, 72.
(ZHOU X, XIE S Q. Adaptive Testing Process Based on Know-ledge Space Theory. Journal of Computer Applications, 2007, 27(S1): 68-69, 72.)
[199] CHATZOPOULOU D I, ECONOMIDES A A. Adaptive Assessment of Student's Knowledge in Programming Courses. Journal of Computer Assisted Learning, 2010, 26(4): 258-269.
[200] GATHITU L N. Examination Representation Using Adaptive Testing: Application in Interview Process. Master Dissertation. Nairobi, Kenya: University of Nairobi, 2010.
[201] WU H M, KUO B C, YANG J M. Evaluating Knowledge Structure-Based Adaptive Testing Algorithms and System Development. Journal of Educational Technology and Society, 2012, 15(2): 73-88.
[202] 李 爽.基于知识处理的测评系统的研究与应用.硕士学位论文.大连:大连海事大学, 2012.
(LI S. Research and Application of Knowledge-Processing-Based Test System. Master Dissertation. Dalian, China: Dalian Maritime University, 2012.)
[203] SITTHISAK O, GILBERT L, ALBERT D. Learning in Moodle Using Competence-Based Knowledge Space Theory and IMS QTI // Proc of the International Computer Science and Engineering Confe-rence. Washington, USA: IEEE, 2013: 53-57.
[204] SITTHISAK O, GILBERT L, ALBERT D. Adaptive Learning Using an Integration of Competence Model with Knowledge Space Theory // Proc of the 2nd International Conference on Advanced Applied Informatics. Washington, USA: IEEE, 2013: 199-202.
[205] 其勒格尔.基于KST的学习诊断模型在《大学计算机基础》课程中的实践研究.硕士学位论文.呼和浩特:内蒙古师范大学, 2019.
(CHELGER. Practical Research on KST-Based Learning Diagnosis Model in the Course of University Computer Foundation. Master Dissertation. Hohhot, China: Inner Mongolia Normal University, 2019.)
[206] 赵建康.自适应选题和自动阅卷的研究与实现.硕士学位论文.南京:南京师范大学, 2020.
(ZHAO J K. Research and Implementation of Adaptive Topic Selection and Automatic Grading. Master Dissertation. Nanjing, China: Nanjing Normal University, 2020.)
[207] 赵宇航.自适应测试及试题推荐系统的研究与实现.硕士学位论文.南京:南京师范大学, 2021.
(ZHAO Y H. Research and Implementation of Adaptive Testing and Question Recommendation System. Master Dissertation. Nanjing, China: Nanjing Normal University, 2021.)
[208] 孙 贝,杨贯中.基于猜测概率和失误概率的学习诊断模型.计算机工程与科学, 2010, 32(4): 154-158.
(SUN B, YANG G Z. A Learning Diagnostic Model Based on the Guess Probability and the Misplay Probability. Computer Engineering and Science, 2010, 32(4): 154-158.)
[209] RONG Q, KONG W R, XIAO Y J, et al. An Adaptive Testing Approach for Competence Using Competence-Based Knowledge Space Theory // Proc of the International Conference on Smart Learning Environments. Singapore, Singapore: Springer Nature Singapore, 2023: 158-163.
[210] DE CHIUSOLE D, SPINOSO M, ANSELMI P, et al. PsycAssist: A Web-Based Artificial Intelligence System Designed for Adaptive Neuropsychological Assessment and Training. Brain Sciences, 2024, 14(2). DOI: 10.3390/brainsci14020122.
[211] QU K S, ZHAI Y H, LIANG J Y, et al. Study of Decision Implications Based on Formal Concept Analysis. International Journal of General Systems, 2007, 36(2): 147-156.
[212] XU W H, LI W T. Granular Computing Approach to Two-Way Learning Based on Formal Concept Analysis in Fuzzy Datasets. IEEE Transactions on Cybernetics, 2014, 46(2): 366-379.
[213] NEWELL A, SIMON H A. Human Problem Solving. Englewood Cliffs, USA: Prentice-Hall, 1972.
[214] EBBINGHAUS H. Memory: A Contribution to Experimental Psychology. New York, USA: Columbia University, 1913. |