| [1] YANG J, RUHAIYEM N I R. Review of Deep Learning-Based Image Inpainting Techniques. IEEE Access, 2024, 12: 138441-138482.
[2] WALI A, NASEER A, TAMOOR M, et al. Recent Progress in Di-gital Image Restoration Techniques: A Review. Digital Signal Processing, 2023, 141. DOI: 10.1016/j.dsp.2023.104187.
[3] XIANG H Y, ZOU Q, NAWAZ M A, et al. Deep Learning for Image Inpainting: A Survey. Pattern Recognition, 2023, 134. DOI: 10.1016/j.patcog.2022.109046.
[4] CHEN Y T, XIA R L, YANG K, et al. DNNAM: Image Inpainting Algorithm via Deep Neural Networks and Attention Mechanism. Applied Soft Computing, 2024, 154. DOI: 10.1016/j.asoc.2024.111392.
[5] YU X X, XU L, LI J, et al. MagConv: Mask-Guided Convolution for Image Inpainting. IEEE Transactions on Image Processing, 2023, 32: 4716-4727.
[6] WAN Z Y, ZHANG J B, CHEN D D, et al. High-Fidelity Pluralistic Image Completion with Transformers // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2021: 4672-4681.
[7] NAZERI K, NG E, JOSEPH T, et al. EdgeConnect: Structure Guided Image Inpainting Using Edge Prediction // Proc of the IEEE/CVF International Conference on Computer Vision Workshops. Washington, USA: IEEE, 2019: 3265-3274.
[8] TYLEI?EK R, ŠÁRA R. Spatial Pattern Templates for Recognition of Objects with Regular Structure // Proc of the 35th German Conference on Pattern Recognition. Berlin, Germany: Springer, 2013: 364-374.
[9] LIU Z W, LUO P, WANG X G, et al. Deep Learning Face Attri-butes in the Wild // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 3730-3738.
[10] ZHOU B L, LAPEDRIZA A, KHOSLA A, et al. Places: A 10 Million Image Database for Scene Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6): 1452-1464.
[11] SHEN J H, KANG S H, CHAN T F.Euler's Elastica and Curvature-Based Inpainting. SIAM Journal on Applied Mathematics, 2003, 63(2): 564-592.
[12] TSCHUMPERLÉ D, DERICHE R.Vector-Valued Image Regularization with PDEs: A Common Framework for Different Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(4): 506-517.
[13] CRIMINISI A, PÉREZ P, TOYAMA K. Region Filling and Object Removal by Exemplar-Based Image Inpainting. IEEE Transactions on Image Processing, 2004, 13(9): 1200-1212.
[14] RU?I? T, PI?URICA A. Context-Aware Patch-Based Image Inpainting Using Markov Random Field Modeling. IEEE Transactions on Image Processing, 2015, 24(1): 444-456.
[15] PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context Encoders: Feature Learning by Inpainting // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 2536-2544.
[16] CHEN G, ZHANG G P, YANG Z G, et al. Multi-scale Patch-GAN with Edge Detection for Image Inpainting. Applied Intelligence, 2023, 53(4): 3917-3932.
[17] WANG Y F, GUO D S, ZHAO H R, et al. Image Inpainting via Multi-scale Adaptive Priors. Pattern Recognition, 2025, 162. DOI: 10.1016/j.patcog.2025.111410.
[18] 邵新茹.叶海良.杨冰.等. 基于三阶段生成网络的图像修复.模式识别与人工智能, 2022, 35(12): 1047-1063.
(SHAO X R, YE H L, YANG B, et al. Image Inpainting with a Three-Stage Generative Network. Pattern Recognition and Artificial Intelligence, 2022, 35(12): 1047-1063.)
[19] GUO X F, YANG H Y, HUANG D.Image Inpainting via Conditional Texture and Structure Dual Generation // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2021: 14114-14123.
[20] LIU Q K, JIANG Y Q, TAN Z T, et al. Transformer Based Plura-listic Image Completion with Reduced Information Loss. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(10): 6652-6668.
[21] WANG Q, WANG Z C, ZHANG X P, et al. Art Image Inpainting with Style-Guided Dual-Branch Inpainting Network. IEEE Transactions on Multimedia, 2024, 26: 8026-8037.
[22] LI W B, LIN Z, ZHOU K, et al. MAT: Mask-Aware Transformer for Large Hole Image Inpainting // Proc of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2022: 10748-10758.
[23] KO K, KIM C S.Continuously Masked Transformer for Image Inpainting // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2023: 13123-13132.
[24] ZHANG C, YANG W X, LI X, et al. MMGInpainting: Multi-modality Guided Image Inpainting Based on Diffusion Models. IEEE Transactions on Multimedia, 2024, 26: 8811-8823.
[25] HUAN L X, XUE N, ZHENG X W, et al. Unmixing Convolutional Features for Crisp Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6602-6609.
[26] CAO C J, FU Y W.Learning a Sketch Tensor Space for Image Inpainting of Man-Made Scenes // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2021: 14489-14498.
[27] WANG H Y, ZHU Y K, GREEN B, et al. Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 108-126.
[28] LI Y H, YAO T, PAN Y W, et al. Contextual Transformer Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 1489-1500.
[29] KOLODOCHKA D, POLYAKOVA S M, NESTERIUK P D O, et al. LaMa Network Architecture Search for Image Inpainting[C/OL].[2025-03-17]. https://ceur-ws.org/Vol-3790/paper32.pdf.
[30] HU J, SHEN L, SUN G.Squeeze-and-Excitation Networks // Proc of the IEEE/CVF International Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2018: 7132-7141.
[31] PARK T, LIU M Y, WANG T C, et al. Semantic Image Synthesis with Spatially-Adaptive Normalization // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 2332-2341. |