| [1] ZHENG L, ZHANG H H, SUN S Y, et al. Person Re-identification in the Wild // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 3346-3355.
[2] DONG W K, ZHANG Z X, SONG C F, et al. Instance Guided Proposal Network for Person Search // Proc of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2020: 2582-2591.
[3] LI Z J, MIAO D Q.Sequential End-to-End Network for Efficient Person Search. Proc of the AAAI Conference on Artificial Intelligence, 2021, 35(3): 2011-2019.
[4] LEE S, OH Y, BAEK D, et al. PLoPS: Localization-Aware Person Search with Prototypical Normalization. Pattern Recognition, 2024, 153. DOI: 10.1016/j.patcog.2024.110479.
[5] XIAO T, LI S, WANG B C, et al. Joint Detection and Identification Feature Learning for Person Search // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 3376-3385.
[6] ZHU X Z, SU W J, LU L W, et al. Deformable DETR: Deformable Transformers for End-to-End Object Detection[C/OL].[2025-09-03]. https://arxiv.org/pdf/2010.04159.
[7] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[8] YAN Y C, LI J P, QIN J, et al. Anchor-Free Person Search // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2021: 7686-7695.
[9] 谢明鸿,康斌,李华锋,等.Anchor Free与Anchor Base算法结合的拥挤行人检测方法.电子与信息学报, 2023, 45(5): 1833-1841.
(XIE M H, KANG B, LI H F, et al. Crowded Pedestrian Detection Method Combining Anchor Free and Anchor Base Algorithm. Jour-nal of Electronics and Information Technology, 2023, 45(5): 1833-1841.)
[10] 石林波,李华锋,张亚飞,等.模态不变性特征学习和一致性细粒度信息挖掘的跨模态行人重识别. 模式识别与人工智能, 2022, 35(12): 1064-1077.
(SHI L B, LI H F, ZHANG Y F, et al. Modal Invariance Feature Learning and Consistent Fine-Grained Information Mining Based Cross-Modal Person Re-identification. Pattern Recognition and Artificial Intelligence, 2022, 35(12): 1064-1077.)
[11] 万磊,李华锋,张亚飞.多模态特征融合和自蒸馏的红外-可见光行人重识别.计算机辅助设计与图形学学报, 2024, 36(7): 1065-1076.
(WAN L, LI H F, ZHANG Y F.Infrared-Visible Person Re-identification via Multi-modality Feature Fusion and Self-Distillation. Journal of Computer-Aided Design and Computer Graphics, 2024, 36(7): 1065-1076.)
[12] 李玲莉,谢明鸿,李凡,等.低秩先验引导的无监督域自适应行人重识别.重庆大学学报, 2021, 44(11): 57-70.
(LI L L, XIE M H, LI F, et al. Unsupervised Domain Adaptive Person Re-identification Guided by Low-Rank Priori. Journal of Chongqing University, 2021, 44(11): 57-70.)
[13] 毛彦嵋,李华锋,张亚飞.面向跨区域场景的无监督域自适应行人重识别.上海交通大学学报[J/OL].[2025-09-03]. DOI: 10.16183/j.cnki.jsjtu.2023.635.
(MAO Y M, LI H F, ZHANG Y F. Unsupervised Domain Adaptation for Cross-Regional Scenes Person Re-identification. Journal of Shanghai Jiaotong University[J/OL].[2025-09-03]. DOI: 10.16183/j.cnki.jsjtu.2023.635.)
[14] LI H F, MAO Y M, ZHANG Y F, et al. Domain-Adaptive Person Re-identification without Cross-Camera Paired Samples. Enginee-ring Applications of Artificial Intelligence, 2025, 145. DOI: 10.1016/j.engappai.2025.110171.
[15] ZHANG Y F, KONG L Q, LI H F, et al. Weakly Supervised Vi-sible-Infrared Person Re-identification via Heterogeneous Expert Collaborative Consistency Learning // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2025: 12659-12669.
[16] LI H F, LIU Y X, ZHANG Y F, et al. Breaking the Paired Sample Barrier in Person Re-identification: Leveraging Unpaired Samples for Domain Generalization. IEEE Transactions on Information Forensics and Security, 2025, 20: 2357-2371.
[17] KIM M, KIM S, SOHN K.Mixture of Submodules for Domain Adaptive Person Search // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2025: 13990-14001.
[18] ZHU H Y, YANG X, WANG N N.Optimizing Label Assignment for Weakly Supervised Person Search. Proc of the AAAI Confe-rence on Artificial Intelligence, 2025, 39(10): 10941-10949.
[19] CAO J L, PANG Y W, ANWER R M, et al. PSTR: End-to-End One-Step Person Search with Transformers // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2022: 9448-9457.
[20] LIU H, FENG J S, JIE Z Q, et al. Neural Person Search Machines // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2017: 493-501.
[21] MUNJAL B, AMIN S, TOMBARI F, et al. Query-Guided End-to-End Person Search // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 811-820.
[22] DONG W K, ZHANG Z X, SONG C F, et al. Bi-directional Interaction Network for Person Search // Proc of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2020: 2836-2845.
[23] JAFFE L, ZAKHOR A.Swap Path Network for Robust Person Search Pre-training // Proc of the IEEE/CVF Winter Conference on Applications of Computer Vision. Washington, USA: IEEE, 2025: 9291-9301.
[24] ZHANG S Z, CHENG D, LUO W L, et al. Text-Based Person Search in Full Images via Semantic-Driven Proposal Generation // Proc of the 4th International Workshop on Human-Centric Multimedia Analysis. New York, USA: ACM, 2023: 5-14.
[25] HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 770-778.
[26] YE M, RUAN W J, DU B, et al. Channel Augmented Joint Lear-ning for Visible-Infrared Recognition // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2021: 13547-13556.
[27] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding // Proc of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Long and Short Papers). Stroudsburg, USA: ACL, 2019, I: 4171-4186.
[28] CHEN K, WANG J Q, PANG J M, et al. MMDetection: Open M-MLAB Detection Toolbox and Benchmark[C/OL].[2025-09-03]. https://arxiv.org/pdf/1906.07155.
[29] CHEN D, ZHANG S S, OUYANG W L, et al. Person Search via a Mask-Guided Two-Stream CNN Model // Proc of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 764-781.
[30] LAN X, ZHU X T, GONG S G.Person Search by Multi-scale Matching // Proc of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 553-569.
[31] HAN C C, YE J C, ZHONG Y S, et al. Re-ID Driven Localization Refinement for Person Search // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2019: 9814-9823.
[32] WANG C, MA B P, CHANG H, et al. TCTS: A Task-Consistent Two-Stage Framework for Person Search // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2020: 11949-11958.
[33] XIAO J M, XIE Y C, TILLO T, et al. IAN: The Individual Aggre-gation Network for Person Search. Pattern Recognition, 2019, 87: 332-340.
[34] YAN Y C, ZHANG Q, NI B B, et al. Learning Context Graph for Person Search // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 2153-2162.
[35] ZHONG Y J, WANG X Y, ZHANG S L.Robust Partial Matching for Person Search in the Wild // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2020: 6826-6834.
[36] CHEN D, ZHANG S S, YANG J, et al. Norm-Aware Embedding for Efficient Person Search // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2020: 12612-12621.
[37] KIM H, JOUNG S, KIM I, et al. Prototype-Guided Saliency Feature Learning for Person Search // Proc of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2021: 4863-4872.
[38] HAN C C, ZHENG Z D, GAO C X, et al. Decoupled and Memory-Reinforced Networks: Towards Effective Feature Learning for One-Step Person Search. Proc of the AAAI Conference on Artificial Intelligence, 2021, 35(2): 1505-1512.
[39] HAN B, KO K, SIM J.End-to-End Trainable Trident Person Search Network Using Adaptive Gradient Propagation // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2021: 905-913.
[40] LEE S, OH Y, BAEK D, et al. OIMNet++: Prototypical Normalization and Localization-Aware Learning for Person Search // Proc of the 17th European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 621-637.
[41] YU R, DU D W, LALONDE R, et al. Cascade Transformers for End-to-End Person Search // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2022: 7257-7266.
[42] FENG C, HAN D Z, CHEN C Q.DTHN: Dual-Transformer Head End-to-End Person Search Network. Computers, Materials and Continua, 2023, 77(1): 245-261.
[43] ZHANG P C, YU X H, BAI X, et al. Joint Discriminative Representation Learning for End-to-End Person Search. Pattern Recognition, 2024, 147. DOI: 10.1016/j.patcog.2023.110053. |