| [1] LI Y T, WEI J S, LIU Y, et al. Deep Learning for Micro-Expre-ssion Recognition: A Survey. IEEE Transactions on Affective Computing, 2022, 13(4): 2028-2046.
[2] DATZ F, WONG G, LÖFFLER-STASTKA H. Interpretation and Wor-king through Contemptuous Facial Micro-Expressions Benefits the Patient-Therapist Relationship. International Journal of Environmental Research and Public Health, 2019, 16(24). DOI: 10.3390/ijerph16244901.
[3] HURLEY C M, ANKER A E, FRANK M G, et al. Background Fa-ctors Predicting Accuracy and Improvement in Micro Expression Recognition. Motivation and Emotion, 2014, 38: 700-714.
[4] HONG J, LEE C, JUNG H.Late Fusion-Based Video Transformer for Facial Micro-Expression Recognition. Applied Sciences, 2022, 12(3). DOI: 10.3390/app12031169.
[5] ZHU J, ZONG Y, CHANG H L, et al. A Sparse-Based Transformer Network with Associated Spatiotemporal Feature for Micro-Expre-ssion Recognition. IEEE Signal Processing Letters, 2022, 29: 2073-2077.
[6] LEI L, CHEN T, LI S G, et al. Micro-Expression Recognition Based on Facial Graph Representation Learning and Facial Action Unit Fusion // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington, USA: IEEE, 2021: 1571-1580.
[7] LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: Image Restoration Using Swin Transformer // Proc of the IEEE/CVF International Conference on Computer Vision Workshops. Washington, USA: IEEE, 2021: 1833-1844.
[8] LI H T, SUI M Z, ZHU Z Q, et al. MMNet: Muscle Motion-Guided Network for Micro-Expression Recognition // Proc of the 31st International Joint Conference on Artificial Intelligence. San Francisco, USA: IJCAI, 2022: 1074-1080.
[9] ZHOU L, MAO Q R, HUANG X H, et al. Feature Refinement: An Expression-Specific Feature Learning and Fusion Method for Micro-Expression Recognition. Pattern Recognition, 2022, 122. DOI: 10.1016/j.patcog.2021.108275.
[10] WANG Z F, ZHANG K H, LUO W H, et al. HTNet for Micro-Ex-pression Recognition. Neurocomputing, 2024, 602. DOI: 10.1016/j.neucom.2024.128196.
[11] CORDONNIER J, LOUKAS A, JAGGI M. Multi-head Attention: Collaborate Instead of Concatenate[C/OL]. [2025-08-19]. https://arxiv.org/pdf/2006.16362.
[12] ZHAO G Y, PIETIKAINEN M.Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915-928.
[13] LIONG S, SEE J, WONG K, et al. Less Is More: Micro-Expre-ssion Recognition from Video Using Apex Frame. Signal Processing(Image Communication), 2018, 62: 82-92.
[14] LIU Y J, ZHANG J K, YAN W J, et al. A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition. IEEE Transactions on Affective Computing, 2016, 7(4): 299-310.
[15] ZHANG L F, HONG X P, ARANDJELOVI? O, et al. Short and Long Range Relation Based Spatio-Temporal Transformer for Micro-Expression Recognition. IEEE Transactions on Affective Computing, 2022, 13(4): 1973-1985.
[16] LO L, XIE H X, SHUAI H H, et al. MER-GCN: Micro-Expre-ssion Recognition Based on Relation Modeling with Graph Convolutional Networks // Proc of the IEEE Conference on Multimedia Information Processing and Retrieval. Washington, USA: IEEE, 2020: 79-84.
[17] ZHAO X H, MA H M, WANG R Q.STA-GCN: Spatio-Temporal AU Graph Convolution Network for Facial Micro-Expression Recognition // Proc of the Chinese Conference on Pattern Recognition and Computer Vision. Berlin, Germany: Springer, 2021: 80-91.
[18] ZHANG L J, ZHANG Y F, SUN X Z, et al. Micro-Expression Recognition Based on Direct Learning of Graph Structure. Neurocomputing, 2025, 619. DOI: 10.1016/j.neucom.2024.129135.
[19] KUMAR A J R, BHANU B. Micro-Expression Classification Based on Landmark Relations with Graph Attention Convolutional Network // Proc of the IEEE/CVF Conference on Computer Vision and Pa-ttern Recognition Workshops. Washington, USA: IEEE, 2021: 1511-1520.
[20] ZHAI Z J, ZHAO J H, LONG C J, et al. Feature Representation Learning with Adaptive Displacement Generation and Transformer Fusion for Micro-Expression Recognition // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2023: 22086-22095.
[21] HU J, SHEN L, SUN G. Squeeze-and-Excitation Networks // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2018: 7132-7141.
[22] WOO S, PARK J, LEE J, et al. CBAM: Convolutional Block Attention Module // Proc of the 15th European Conference on Com-puter Vision. Berlin, Germany: Springer, 2018: 3-19.
[23] WANG W H, XIE E Z, LI X, et al. Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2021: 548-558.
[24] CAI H, LI J Y, HU M Y, et al. EfficientViT: Lightweight Multi-Scale Attention for High-Resolution Dense Prediction // Proc of the IEEE/CVF International Conference on Computer Vision. Wa-shington, USA: IEEE, 2023: 17256-17267.
[25] LI X B, PFISTER T, HUANG X H, et al. A Spontaneous Micro-Expression Database: Inducement, Collection and Baseline // Proc of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Washington, USA: IEEE, 2013. DOI: 10.1109/FG.2013.6553717.
[26] YAN W J, LI X B, WANG S J, et al. CASME II: An Improved Spontaneous Micro-Expression Database and the Baseline Evaluation. PLoS One, 2014, 9(1). DOI: 10.1371/journal.pone.0086041.
[27] DAVISON A K, LANSLEY C, COSTEN N, et al. SAMM: A Spon-taneous Micro-Facial Movement Dataset. IEEE Transactions on Affective Computing, 2018, 9(1): 116-129.
[28] LIONG S, SEE J, WONG K, et al. Automatic Apex Frame Spo-tting in Micro-Expression Database // Proc of the 3rd IAPR Asian Conference on Pattern Recognition. Washington, USA: IEEE, 2015: 665-669.
[29] JOSE E, GREESHMA M, HARIDAS M T P, et al. Face Recognition Based Surveillance System Using FaceNet and MTCNN on Jetson TX2 // Proc of the 5th International Conference on Advanced Computing and Communication Systems. Washington, USA: IEEE, 2019: 608-613.
[30] FU C H, YANG W Z, CHEN D, et al. AM3F-FlowNet: Atten-tion-Based Multi-scale Multi-branch Flow Network. Entropy, 2023, 25(7). DOI: 10.3390/e25071064.
[31] GAN Y S, LIEN S, CHIANG Y, et al. LAENet for Micro-Expre-ssion Recognition. The Visual Computer, 2024, 40(2): 585-599.
[32] CAI W H, ZHAO J L, YI R, et al. MFDAN: Multi-level Flow-Driven Attention Network for Micro-Expression Recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(12): 12823-12836.
[33] LIONG S, GAN Y S, SEE J, et al. Shallow Triple Stream Three-Dimensional CNN(STSTNet) for Micro-Expression Recognition // Proc of the 14th IEEE International Conference on Automatic Face and Gesture Recognition. Washington, USA: IEEE, 2019. DOI: 10.1109/FG.2019.8756567.
[34] GEORGE D, LEHRACH W, KANSKY K, et al. A Generative Vision Model That Trains with High Data Efficiency and Breaks Text-Based CAPTCHAs. Science, 2017, 358(6368). DOI: 10.1126/science.aag26. |