| [1] GIRSHICK R.Fast R-CNN // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 1440-1448.
[2] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[3] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397.
[4] REDMON J, FARHADI A. YOLOv3: An Incremental Improvement[C/OL]. [2025-08-19]. http://arxiv.org/abs/1804.02767.
[5] BOCHKOVSKIY A, WANG C, LIAO H M. YOLOv4: Optimal Speed and Accuracy of Object Detection[C/OL]. [2025-08-19]. http://arxiv.org/abs/2004.10934.
[6] WANG C, BOCHKOVSKIY A, LIAO H M.YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors // Proc of the IEEE/CVF Conference on Computer Vision and Pa-ttern Recognition. Washington, USA: IEEE, 2023: 7464-7475.
[7] VARGHESE R, SAMBATH M.YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness // Proc of the International Conference on Advances in Data Engineering and Inte-lligent Computing Systems. Washington, USA: IEEE, 2024. DOI: 10.1109/ADICS58448.2024.10533619.
[8] DOSOVISKIY A, BEYER L, KOLESNIKOV A, et al. An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale[C/OL].[2025-08-19]. https://arxiv.org/pdf/2010.11929.
[9] TAN M X, PANG R M, LE Q V.EfficientDet: Scalable and Efficient Object Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2020: 10778-10787.
[10] WANG J D, SUN K, CHENG T H, et al. Deep High-Resolution Representation Learning for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364.
[11] LIN T, GOYAL P, GIRSHICK R, et al. Focal Loss for Dense Object Detection // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2017: 2999-3007.
[12] LIU T, LUO P Q, ZHANG Y X. Lightweight Feature Fusion for Single Shot Multibox Floater Detection // Proc of the 12th International Conference on Communications, Signal Processing, and Systems. Berlin, Germany: Springer, 2024, I: 235-243.
[13] CUO C, LÜ X L, ZHANG Y, et al. Improved YOLOv4-Tiny Network for Real-Time Electronic Component Detection. Scientific Reports, 2021, 11(1). DOI: 10.1038/s41598-021-02225-y.
[14] WANG C, YEH I, LIAO H M.YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information // Proc of the 18th European Conference Computer Vision. Berlin, Germany: Springer, 2025. DOI: 10.1007/978-3-031-72751-1_1.
[15] WANG A, CHEN H, LIU L H, et al. YOLOv10: Real-Time End-to-End Object Detection[C/OL].[2025-08-19]. https://arxiv.org/pdf/2405.14458.
[16] XUE Y, YAO C H, WAHIB M, et al. YOLO-DKR: Differentiable Architecture Search Based on Kernel Reusing for Object Detection. Information Sciences, 2025, 713. DOI: 10.1016/j.ins.2025.122180.
[17] WANG A, CHEN H, LIN Z J, et al. Rep ViT: Revisiting Mobile CNN from ViT Perspective // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2024: 15909-15920.
[18] LI Y X, HOU Q B, ZHENG Z H, et al. Large Selective Kernel Network for Remote Sensing Object Detection // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2023: 16748-16759.
[19] XIONG Y W, LI Z Q, CHEN Y T, et al. Efficient Deformable ConvNets: Rethinking Dynamic and Sparse Operator for Vision Applications // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2024: 5652-5661.
[20] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[21] ZHENG Z H, WANG P, REN D W, et al. Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586.
[22] DU D W, ZHU P F, WEN L Y, et al. VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results // Proc of the IEEE/CVF International Conference on Computer Vision Workshop. Washington, USA: IEEE, 2019: 213-226.
[23] YU H Y, LI G R, ZHANG W G, et al. The Unmanned Aerial Vehi-cle Benchmark: Object Detection, Tracking and Baseline. International Journal of Computer Vision, 2020, 128(5): 1141-1159.
[24] GLENN J, ALEX S, JIRKA B, et al. Ultralytics/YOLOv5:v3.0[EB/OL]. [2025-08-19]. https://ui.adsabs.harvard.edu/abs/2020zndo..3983579J/abstract.
[25] GLENN J, QIU J, CHAURASIA A.Ultralytics YOLO11[EB/OL]. [2025-08-29]. https://scholar.google.com/citations?view_op=view_citation&hl=zh-CN&user=swSrGtsAAAAJ&citation_for_view=swSrGtsAAAAJ:GnPB-g6toBAC.
[26] ZHANG Y, YE M, ZHU G Y, et al. FFCA-YOLO for Small Object Detection in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62. DOI: 10.1109/TGRS.2024.3363057.
[27] ZHU X K, LÜ S C, WANG X, et al. TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios // Proc of the IEEE/CVF International Conference on Computer Vision Workshops. Washington, USA: IEEE, 2021: 2778-2788.
[28] ZHAO Y, LÜ W Y, XU S L, et al. DETRs Beat YOLOs on Real-time Object Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2024: 16965-16974.
[29] ZHANG H X, ZHANG H, LIU K, et al. UAV-DETR: Efficient End-to-End Object Detection for Unmanned Aerial Vehicle Ima-gery // Proc of the IEEE/RSJ International Conference on Intelli-gent Robots and Systems. Washington, USA: IEEE, 2025: 15143-15149.
[30] YANG F, FAN H, CHU P, et al. Clustered Object Detection in Aerial Images // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2019: 8310-8319.
[31] LI W S, ZHANG X Y, PENG Y D, et al. DMNet: A Network Architecture Using Dilated Convolution and Multiscale Mechanisms for Spatiotemporal Fusion of Remote Sensing Images. IEEE Sensors Journal, 2020, 20(20): 12190-12202.
[32] DUAN K W, BAI S, XIE L X, et al. CenterNet: Keypoint Tri-plets for Object Detection // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2019: 6568-6577.
[33] WEI Z W, DUAN C Z, SONG X H, et al. AMRNet: Chips Augmentation in Aerial Images Object Detection[C/OL]. [2025-08-19]. http://arxiv.org/abs/2009.07168.
[34] 吴萌萌,张泽斌,宋尧哲,等.基于自适应特征增强的小目标检测网络.激光与光电子学进展, 2023, 60(6): 65-72.
(WU M M, ZHANG Z B, SONG Y Z, et al. Small-Target Detection Network Based on Adaptive Feature Enhancement. Laser & Optoelectronics Progress, 2023, 60(6): 65-72.) |