模式识别与人工智能
Sunday, Apr. 6, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2006, Vol. 19 Issue (5): 667-673    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Improved Adaptive Algorithm of Blind Source Separation Based on Nonholonomic Natural Gradient
NIU YiLong1, WANG YingMin1, WANG Yi2
1.College of Marine, Northwestern Polytechnic University, Xi’an 710072
2.School of Electronic and Information, Northwestern Polytechnic University, Xi’an 710072

Download: PDF (978 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Compared with the natural gradient learning algorithm of blind source separation, the nonholonomic natural gradient algorithm avoids numerical instability which is caused by the nonstationary source signals and the rapid magnitude change. Aiming at the difficulty in determining the nonlinear activation function, an improved algorithm using kurtosis to select activation function adaptively without available prior information is proposed. It retains the predominance of nonholonomic natural gradient algorithm in restoring nonstationary sources, and can be adapted to the sources of arbitrary distribution. Computer simulations show the performance of proposed method is better than that of the original algorithm with tangent function.
Key wordsBlind Source Separation      Nonholonomic Constraints      Nature Gradient      Activation Function     
Received: 09 June 2005     
ZTFLH: TN911.7  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
NIU YiLong
WANG YingMin
WANG Yi
Cite this article:   
NIU YiLong,WANG YingMin,WANG Yi. Improved Adaptive Algorithm of Blind Source Separation Based on Nonholonomic Natural Gradient[J]. , 2006, 19(5): 667-673.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2006/V19/I5/667
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn