模式识别与人工智能
Sunday, Apr. 13, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2014, Vol. 27 Issue (11): 1026-1031    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Variable Step-Size Nonholonomic Natural Gradient Algorithm Based on Sign Operator
JI Ce, YANG Kun, WANG Yan-Ru, LIU Meng-Die
College of Information Science and Engineering, Northeast University, Shenyang 110819

Download: PDF (1118 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  By introducing the nonholonomic constraints, the nonholonomic natural gradient algorithm effectively overcomes the shortcoming and the insufficiency of the traditional natural gradient algorithm, namely,it can still work well when the amplitude of source signal changes rapidly over time or is equal to zero in a certain period of time. Meanwhile, the sign operator derived from a general dynamic separation model can improve the convergence of the algorithm. Thus, a nonholonomic natural gradient algorithm based on the sign operation is obtained by combining the above two ideas. Furthermore, a variable step-size based on the gradient of cost function is also applied to the proposed algorithm to balance the contradiction between the convergence speed and the steady-state error. The simulation results show that the performance of the proposed algorithm is superior to that of traditional algorithm, and it improves convergence speed without worsening the steady-state error seriously.
Key wordsBlind Source Separation      Natural Gradient      Nonholonomic Constrains      Sign Operator      Adaptive Step-Size     
Received: 27 April 2013     
ZTFLH: TN911.7  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
JI Ce
YANG Kun
WANG Yan-Ru
LIU Meng-Die
Cite this article:   
JI Ce,YANG Kun,WANG Yan-Ru等. Variable Step-Size Nonholonomic Natural Gradient Algorithm Based on Sign Operator[J]. , 2014, 27(11): 1026-1031.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2014/V27/I11/1026
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn