模式识别与人工智能
Wednesday, Apr. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2011, Vol. 24 Issue (5): 685-691    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Optimizing Data-Dependent Kernel Using Semi-supervised Learning with Pairwise Constraints
WANG Na, LIU Guo-Sheng, LI Xia
College of Information Engineering, Shenzhen University,Shenzhen 518060

Download: PDF (425 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  The selection of kernel function and its parameters determine the performance of kernel function. A semi-supervised data-dependent kernel optimization algorithm is presented, which uses unlabeled data and pairwise constraints to maximize an objective function sensitive to data-dependent kernel, so that its performance is improved. Then the proposed method is employed to optimize the kernel of kernel principal components analysis (KPCA) and the experimental results of the classification and clustering performance on the artificial data and UCI data sets show its efficiency.
Key wordsPairwise Constraints      Data-Dependent Kernel      Semi-supervised Learning      Kernel Principal Components Analysis     
Received: 26 April 2010     
ZTFLH: TP391  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
WANG Na
LIU Guo-Sheng
LI Xia
Cite this article:   
WANG Na,LIU Guo-Sheng,LI Xia. Optimizing Data-Dependent Kernel Using Semi-supervised Learning with Pairwise Constraints[J]. , 2011, 24(5): 685-691.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2011/V24/I5/685
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn