模式识别与人工智能
Thursday, Apr. 10, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2011, Vol. 24 Issue (5): 680-684    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
An Artificial Glowworm Swarm Optimization Algorithm Based on Powell Local Optimization Method
ZHANG Jun Li, ZHOU Yong Quan
College of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning 530006

Download: PDF (291 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  In order to overcome the shortcomings of artificial glowworm swarm optimization (GSO) algorithm including slow convergence speed, easily falling into local optimum value, low computational accuracy and low success rate of convergence, an artificial GSO algorithm based on Powell local optimization method is proposed. It adopts the powerful local optimization ability of Powell method and embeds it into GSO as a local search operator. Experimental results of 8 typical functions show that the proposed algorithm is superior to GSO in convergence efficiency,computational precision and stability.
Key wordsPowell Method      Glowworm Swarm Optimization (GSO)      Function Optimization     
Received: 23 July 2010     
ZTFLH: TP181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHANG Jun Li
ZHOU Yong Quan
Cite this article:   
ZHANG Jun Li,ZHOU Yong Quan. An Artificial Glowworm Swarm Optimization Algorithm Based on Powell Local Optimization Method[J]. , 2011, 24(5): 680-684.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2011/V24/I5/680
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn