模式识别与人工智能
Tuesday, Apr. 22, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2009, Vol. 22 Issue (1): 113-122    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Random Projection Based Clustering Method of Parallel Data Streams
CHEN Hua-Hui1,2, SHI Bo-Le1
1.Department of Computing and Information Technology, Fudan University, Shanghai 200433
2.School of Information Science and Engineering, Ningbo University, Ningbo 315211

Download: PDF (492 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A synopsis is maintained dynamically for each data stream. The construction of the synopsis is based on random projections and it utilizes the amnesic feature of data stream. Using the synopsis, the approximate distances between streams and the cluster center can be computed fast. And an efficient online version of the classical K-means clustering algorithm is developed. The experimental results show the method can be performed effectively with a good clustering quality.
Key wordsSynopsis      Amnesic Feature      Random Projection      Data Stream     
Received: 18 October 2007     
ZTFLH: TP391  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
CHEN Hua-Hui
SHI Bo-Le
Cite this article:   
CHEN Hua-Hui,SHI Bo-Le. Random Projection Based Clustering Method of Parallel Data Streams[J]. , 2009, 22(1): 113-122.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2009/V22/I1/113
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn