|
|
Adaptive Clonal Selection Algorithm and Its Simulation |
WEI Yuan-Yuan1,2, TANG Chao-Li3 , HUANG You-Rui3 |
1.Research Center of Intelligent Information System, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 2.School of Information Science and Technology, University of Science and Technology of China, Hefei 230027 3.School of Electrical Engineering, Anhui University of Science and Technology, Huainan 232001 |
|
|
Abstract Based on the basic principle of clonal selection algorithm, an adaptive clonal selection algorithm (ACSA) for function optimization is proposed. The clone number of antibody, the high frequency mutation ratios and the renewal number of each generation can regulate automatically in ACSA. Meanwhile, mutation antibodies have the ability of immune memory. The results indicate that the ACSA has stronger convergence and adaptability through the convergence analysis and simulation compared with standard clonal selection algorithm.
|
Received: 26 April 2007
|
|
|
|
|
[1] Li Minqiang, Kou Jisong. Coordinate Multi-Population Genetic Algorithms for Multi-Modal Function Optimization. Acta Automatica Sinica, 2002, 28(4): 497-504 (in Chinese) (李敏强,寇纪淞.多模态函数优化的协同多群体遗传算法.自动化学报, 2002, 28(4): 497-504) [2] Liu Yaqin, Wang Cheng, Zhang Lu. Function Optimization Problems Based on Multi-Generation Competitive Genetic Algorithm. Academic Journal of Shanghai Second Medical University, 2005, 25(8): 809-811 (in Chinese) (刘雅琴,王 成,章 鲁.基于多代竞争遗传算法的数值函数优化.上海第二医科大学学报, 2005, 25(8): 809-811) [3] Wang Yunjian, Jiang Fengsuo, Li Zhongxia. Application of Hybrid Genetic Algorithm in Function Optimization. Ordnance Industry Automation, 2005, 24(2): 65-66 (in Chinese) (王允建,江锋锁,李钟侠.混沌遗传算法在函数优化中的应用.兵工自动化, 2005, 24(2): 65-66) [4] de Castro L N, von Zuben F J. Learning and Optimization Using the Clonal Selection Principle. IEEE Trans on Evolutionary Computation, 2002, 6(3): 239-251 [5] de Castro L N, von Zuben F J. The Clonal Selection Algorithm with Engineering Applications // Proc of the Genetic and Evolutionary Computation Conference. Las Vegas, USA, 2000: 36-39 [6] Tongchim S, Chongstitvatana P. Parallel Genetic Algorithm with Parameter Adaptation. Information Processing Letters, 2002, 82(1): 47-54 [7] Liu Fang, Yang Haichao. A Clone Based Multicast Algorithm with Adjustable Parameter. Journal of Software, 2005, 16(1): 145-150 (in Chinese) (刘 芳,杨海潮.参数可调的克隆多播路由算法.软件学报, 2005, 16(1): 145-150) [8] Chen Debao, Zhao Chunxia. Adaptive Immune Evolutionary Programming and Application in Function Optimization. Journal of System Simulation, 2006, 18(5): 1147-1150 (in Chinese) (陈得宝,赵春霞.一种改进的自适应免疫进化规划方法及其应用.系统仿真学报, 2006, 18(5): 1147-1150) [9] Yu Wen, Li Renhou. A New Evolutionary Approach Based on Reproduction of Asexual Cells. Computer Engineering & Science, 2001, 3(4): 7-10,14 (in Chinese) (余 文,李人厚.基于单亲生物无性繁殖的一种进化算法.计算机工程与科学, 2001, 3(4): 7-10,14) [10] Zhang Haiying, Han Guijin, Pan Yongxiang. Chaos Immune Evolutionary Algorithm and Its Applications to Function Optimization. Pattern Recognition and Artificial Intelligence, 2007, 20(2): 225-229 (in Chinese) (张海英,韩贵金,潘永湘.混沌免疫进化算法及其在函数优化中的应用.模式识别与人工智能, 2007, 20(2): 225-229) [11] Mario V A, Carlos A C C, Onésimo H L. Convergence Analysis of a Multi-Objective Artificial Immune System Algorithm [EB/OL]. [2004-05-07]. www.lania.mx/~ccoello/EM00/villalobos04.pdf.gz [12] Chen Changzheng, Wang Nan. Adaptive Selection of Crossover and Mutation Probability of Genetic Algorithm and Its Mechanism. Control Theory & Applications, 2002, 19(1): 41-43 (in Chinese) (陈长征,王 楠.遗传算法中交叉和变异概率选择的自适应方法及作用机理.控制理论与应用, 2002, 19(1): 41-43) |
|
|
|