模式识别与人工智能
Friday, May. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2009, Vol. 22 Issue (2): 223-232    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
A Latin Hypercube Sampling Based Multi-Objective Evolutionary Algorithm
ZHENG Jin-Hua, LUO Biao
Institute of Information Engineering, Xiangtan University, Xiangtan 411105

Download: PDF (2332 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Two evolutionary models, individual based evolutionary model (IND) and population based evolutionary model (POP) are proposed. Based on these two models, two kinds of multi-objective evolutionary algorithms (LHS) are designed based on Latin hypercube sampling, namely LHS-MOEAs. In LHS-MOEAs, the LHS local search is designed for exploiting promising areas and the evolutionary operator is designed for exploring new searching areas in feasible space. The combination of LHS local search and evolutionary operator in LHS-MOEA can prevent degeneration effectively. Experimental results demonstrate that the proposed LHS-MOEAs performs better and it is more preponderant than the classical NSGA-II in solving CPS_MOPs.
Key wordsMulti-Objective Evolutionary Algorithm (MOEA)      Latin Hypercube Sampling (LHS)      Complex Pareto Set      Evolutionary Model      Local Search      Evolutionary Operation     
Received: 14 January 2008     
ZTFLH: TP181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHENG Jin-Hua
LUO Biao
Cite this article:   
ZHENG Jin-Hua,LUO Biao. A Latin Hypercube Sampling Based Multi-Objective Evolutionary Algorithm[J]. , 2009, 22(2): 223-232.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2009/V22/I2/223
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn