模式识别与人工智能
Friday, May. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2009, Vol. 22 Issue (2): 263-269    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
An Improved SLAM Algorithm with Sparse Extended Information Filters
GUO Jian-Hui, ZHAO Chun-Xia
College of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094

Download: PDF (609 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  How to achieve a sparse information matrix exactly is a key issue in sparse extended information filter (SEIF) simultaneous localization and map building (SLAM). A sparsification rule is put forward based on the deep analysis of correlation. The rule can utilize observation information of sparsification time, observe the correlation globally and reserve the features with the strongest correlation. The precision and consistency of the algorithm are improved without an increase of computational burden. Results of Monte-Carlo simulation experiments indicate the validity of the improved algorithm.
Key wordsSparse Extended Information Filter (SEIF)      Simultaneous Localization and Map Building (SLAM)      Sparsification Rule      Correlation     
Received: 27 August 2007     
ZTFLH: TP24  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
GUO Jian-Hui
ZHAO Chun-Xia
Cite this article:   
GUO Jian-Hui,ZHAO Chun-Xia. An Improved SLAM Algorithm with Sparse Extended Information Filters[J]. , 2009, 22(2): 263-269.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2009/V22/I2/263
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn