模式识别与人工智能
Friday, Apr. 11, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2009, Vol. 22 Issue (2): 305-311    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Generalized Fuzzy Entropy Thresholding Based on Quantum Genetic Parameter Optimization
YU Hai-Yan, FAN Jiu-Lun
Department of Information and Control, Xi'an Institute of Post and Telecommunications, Xi'an 710121

Download: PDF (641 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Taking advantage of quantum genetic algorithm, a nested optimization method is proposed aiming at the generalized fuzzy entropy parameters. Quantum genetic algorithm is used to automatically determine the optimal parameter m in (0,1) based on an image segmentation quality evaluation criterion and the parameters of the fuzzy membership function corresponding to each m based on the maximum fuzzy entropy criterion. Thus, the automatic selection of threshold is realized in generalized fuzzy entropy-based image segmentation method. Experimental results show that the proposed method can obtain good segmentation results for images with poor illumination.
Key wordsImage Segmentation      Quantum Genetic Algorithm      Generalized Fuzzy Entropy      Image Quality Evaluation Criterion     
Received: 17 December 2007     
ZTFLH: TN911.73  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YU Hai-Yan
FAN Jiu-Lun
Cite this article:   
YU Hai-Yan,FAN Jiu-Lun. Generalized Fuzzy Entropy Thresholding Based on Quantum Genetic Parameter Optimization[J]. , 2009, 22(2): 305-311.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2009/V22/I2/305
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn