模式识别与人工智能
Sunday, Apr. 13, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2009, Vol. 22 Issue (2): 325-329    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Multiple Subclassifier Integration Method of Decision Forest Based on General Information Theory
WANG Li-Min, XU Pei-Juan, LI Xiong-Fei
College of Computer Science and Technology, Jilin University, Changchun 130012

Download: PDF (359 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  To improve the scalability and adaptability of traditional decision tree learning algorithm, a novel multiple subclassifier integration method of decision forest is proposed based on general information theory. It adopts down-top learning strategy and combines discretization with logical representation of decision tree naturally. The learning procedure does not require any human intervention. The number and structures of subtrees can be set automatically. Experimental results and instance analysis on UCI machine learning data sets prove the feasibility and effectiveness of the proposed method.
Key wordsMultiple Subclassifier Integration      General Information Theory      Decision Forest     
Received: 10 June 2008     
ZTFLH: TP182  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
WANG Li-Min
XU Pei-Juan
LI Xiong-Fei
Cite this article:   
WANG Li-Min,XU Pei-Juan,LI Xiong-Fei. Multiple Subclassifier Integration Method of Decision Forest Based on General Information Theory[J]. , 2009, 22(2): 325-329.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2009/V22/I2/325
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn