模式识别与人工智能
Tuesday, Apr. 22, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2009, Vol. 22 Issue (3): 349-353    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Semi-Supervised Proximal Support Vector Machine via Generalized Eigenvalues
YANG Xu-Bing1,2, PAN Zhi-Song3, CHEN Song-Can1
1.College of Information Science and Technology, Nanjing University of Aeronautics and Astronautics,Nanjing 210016
2.College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037
3.Institute of Command Automation, PLA University of Science Technology, Nanjing 210007

Download: PDF (484 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A binary classifier, proximal support vector machine via generalized eigenvalues (GEPSVM), has been proposed recently. In this paper, with the characteristics of plane classifiers and manifold learning, an effective semi-supervised algorithm SemiGEPSVM is proposed. It keeps the performance of handling XOR problems and is suitable for more challenges, even with only one labeled sample per class. While the number of labeled samples is not satisfactory to generate plane, k-nearest neighbor is used to select the unlabelled samples. Otherwise, the proposed sample selection method with plane characteristics is adopted. Furthermore, it is proved that the proposed selection method is global optimization. And the experimental results of SemiGEPSVM are verified on one toy problem and some benchmark datasets.
Key wordsSupport Vector Machine      Semi-Supervised Learning      Manifold Learning     
Received: 29 April 2008     
ZTFLH: TP391  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YANG Xu-Bing
PAN Zhi-Song
CHEN Song-Can
Cite this article:   
YANG Xu-Bing,PAN Zhi-Song,CHEN Song-Can. Semi-Supervised Proximal Support Vector Machine via Generalized Eigenvalues[J]. , 2009, 22(3): 349-353.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2009/V22/I3/349
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn