模式识别与人工智能
Tuesday, Apr. 22, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2009, Vol. 22 Issue (3): 366-373    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Extremum Decomposition Based Mixtures of Kernels and Its Improvement
YE Qiao-Lin, YE Ning, ZHANG Xun-Hua
School of Information Science and Technology, Nanjing Forestory University, Nanjing 210037

Download: PDF (495 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  In this paper, the property is used that any matrices can be decomposed into symmetric positive semi-definite ones using extremum decomposition. It is used on RBF kernel to generate a new kernel, called Ked. Combining Ked with global poly kernel, a mixed kernel with good classification performance is constructed. The classification experiments on UCI database are deployed with the mixed kernel. Compared with RBF kernel, the experimental results show that mixed kernel can decrease the number of support vectors and has better classification performance. Furthermore, it has good training time when the value of RBF kernel parameter is small.
Key wordsSupport Vector Machine (SVM)      Mixtures of Kernels      Extremum Decomposition      Local Kernels     
Received: 29 April 2008     
ZTFLH: TP391.8  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YE Qiao-Lin
YE Ning
ZHANG Xun-Hua
Cite this article:   
YE Qiao-Lin,YE Ning,ZHANG Xun-Hua. Extremum Decomposition Based Mixtures of Kernels and Its Improvement[J]. , 2009, 22(3): 366-373.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2009/V22/I3/366
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn