模式识别与人工智能
Tuesday, Apr. 22, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2009, Vol. 22 Issue (3): 499-505    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Application of Higher-Order Statistics Features of ICA Coefficients in Texture Classification
XU Xiao-Hong, YANG Xue-Zhi, YANG De-Mei, Gao Jun
Laboratory of Image Information Processing, School of Computer and Information, Hefei University of Technology, Hefei 230009

Download: PDF (371 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  ICA coefficients are non-Gaussian in independent component analysis model. The high-order statistical features are used in characterization of non-Gaussian feature. The combined moments of variance, skewness and kurtosis are proposed to describe the ICA coefficients probability distributing characteristic. The combined moments are used in texture classification and it can achieve better classification performance than the previously reported ICA features. Furthermore, L-moments are used to improve robustness in moments estimation and to get better performance than the ordinary moments.
Key wordsTexture Classification      Independent Component Analysis (ICA)      Higher-Order Statistical Feature      Moments      L-Moment     
Received: 11 June 2008     
ZTFLH: TP391  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
XU Xiao-Hong
YANG Xue-Zhi
YANG De-Mei
Gao Jun
Cite this article:   
XU Xiao-Hong,YANG Xue-Zhi,YANG De-Mei等. Application of Higher-Order Statistics Features of ICA Coefficients in Texture Classification[J]. , 2009, 22(3): 499-505.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2009/V22/I3/499
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn