模式识别与人工智能
Friday, Apr. 11, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2009, Vol. 22 Issue (4): 574-580    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Semi-Supervised Dimensionality Reduction Algorithm of Tensor Image
ZHU Feng-Mei, ZHANG Dao-Qiang
Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016

Download: PDF (693 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Traditionally, an (n1*n2) image is represented by a vector in the Euclidean space R(n1*n2), thus the spatial relationships between pixels in an image are ignored. In this paper, the images are presented as points in the tensor space Rn1Rn2. Then, a semi-supervised dimensionality reduction algorithm is put forward based on pairwise constraints (must-link and cannot-link)between the images. The data in the reduced space preserve the local structure of the data manifold well. Finally, experimental results on face datasets validate the effectiveness of the proposed algorithm.
Key wordsmage Representation      Feature Extraction      Semi-Supervised Dimensionality Reduction      Tensor Analysis     
Received: 20 October 2008     
ZTFLH: TP391.4  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHU Feng-Mei
ZHANG Dao-Qiang
Cite this article:   
ZHU Feng-Mei,ZHANG Dao-Qiang. Semi-Supervised Dimensionality Reduction Algorithm of Tensor Image[J]. , 2009, 22(4): 574-580.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2009/V22/I4/574
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn