模式识别与人工智能
Friday, Apr. 11, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2008, Vol. 21 Issue (1): 111-115    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Multiagent Cooperative Learning Based on Coordination of Boundary Samples
HAN Wei
School of Information Engineering, Nanjing University of Finance and Economics, Nanjing 210046

Download: PDF (393 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at the large statespace caused by the slow convergence of Q learning, a kind of multiagent cooperative learning is proposed by the coordination of boundary samples. Each agent is specialized in its subspace, and the agents coordinate through Boolean functions in boundary states. Simulation results have proved that the proposed method performs better than the traditional global learning.
Key wordsMultiagent System      Reinforcement Learning      Multiagent Cooperation     
Received: 05 December 2006     
ZTFLH: TP181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
HAN Wei
Cite this article:   
HAN Wei. Multiagent Cooperative Learning Based on Coordination of Boundary Samples[J]. , 2008, 21(1): 111-115.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2008/V21/I1/111
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn