模式识别与人工智能
Friday, Apr. 11, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2008, Vol. 21 Issue (3): 410-416    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
A Class-Information-Incorporated Kernel Principal Component Analysis Method
LI Yong-Zhi1,2, YANG Jing-Yu2, WU Song-Song2
1.School of Information Science and Technology, Nanjing Forestry University, Nanjing 2100372.
School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094

Download: PDF (656 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A supervised feature extraction method based on kernel principal component analysis (KPCA) is presented. In feature extraction the class information of the training kernel sample is sufficiently utilized, and the simple mathematical formulation is employed which is similar to KPCA. Thus, the method is named as class-information-incorporated kernel principal component analysis (CIKPCA). Furthermore, a new classification strategy is presented by fusing two kinds of feature vectors to improve the recognition rate. The experimental results on three databases show that the proposed method is better than KPCA in terms of recognition rate, and it even outperforms KLDA.
Key wordsKernel Principal Component Analysis (KPCA)      Class-Information-Incorporated Kernel Principal Component Analysis (CIKPCA)      Feature Extraction      Face Recognition     
Received: 17 January 2007     
ZTFLH: TP391  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LI Yong-Zhi
YANG Jing-Yu
WU Song-Song
Cite this article:   
LI Yong-Zhi,YANG Jing-Yu,WU Song-Song. A Class-Information-Incorporated Kernel Principal Component Analysis Method[J]. , 2008, 21(3): 410-416.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2008/V21/I3/410
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn