模式识别与人工智能
Friday, May. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2008, Vol. 21 Issue (4): 520-526    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Study of Data Mining in Intrusion Detection
ZHOU Quan, ZHAO Feng-Ying, WANG Chong-Jun, CHEN Shi-Fu
National Key Laboratory for Novel Software Technology, Department of Computer Science and Technology, Nanjing University, Nanjing 210093

Download: PDF (507 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  The solution based on multi-approaches of data mining involving k-means, C4.5, Nave Bayes, Bayes net and Co-training is proposed in order to deal with the major problems of intrusion detection dataset such as class balance, class overlapping, noise, distributions etc. The experiment results show its validity.
Key wordsDuplication      Imbalance      Intrusion Detection      Soft-Ensemble      Sampling     
Received: 07 March 2007     
ZTFLH: TP181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHOU Quan
ZHAO Feng-Ying
WANG Chong-Jun
CHEN Shi-Fu
Cite this article:   
ZHOU Quan,ZHAO Feng-Ying,WANG Chong-Jun等. Study of Data Mining in Intrusion Detection[J]. , 2008, 21(4): 520-526.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2008/V21/I4/520
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn