模式识别与人工智能
Thursday, Apr. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2008, Vol. 21 Issue (5): 603-608    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Orthogonal MFA and Uncorrelated MFA
YU Yao-Liang, ZHANG Li-Ming
Department of Electronics Engineering, School of Information Science and Engineering, Fudan University, Shanghai 200433

Download: PDF (835 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Recently proposed marginal fisher analysis (MFA) has obtained better classification results than the traditional linear discriminant analysis (LDA). Based on the separability criterion of MFA, the orthogonal and uncorrelated restrictions are imposed on the base-vectors in this paper. An iterative algorithm for the proposed methods is given and it is proved theoretically that the separability of the proposed methods is better than that of the original MFA. Finally, experimental results on ORL and Yale databases validate the effectiveness of the proposed methods.
Key wordsLinear Discriminant Analysis (LDA)      Marginal Fisher Analysis (MFA)      Orthogonal Marginal Fisher Analysis (OMFA)      Uncorrelated Marginal Fisher Analysis (UMFA)      Manifold Learning      Face Recognition     
Received: 30 July 2007     
ZTFLH: TP391.41  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YU Yao-Liang
ZHANG Li-Ming
Cite this article:   
YU Yao-Liang,ZHANG Li-Ming. Orthogonal MFA and Uncorrelated MFA[J]. , 2008, 21(5): 603-608.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2008/V21/I5/603
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn