模式识别与人工智能
Friday, May. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2008, Vol. 21 Issue (5): 689-694    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Image Retrieval Based on Dominant Set Clustering and Support Vector Machine
WANG Man1, PENG Guo-Hua1, YE Zheng-Lin1, ZHAO Cong1, WANG Shu-Xun1,2
1.Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi'an 7100722.
Department of Mathematics, Shaanxi University of Technology, Hanzhong 723000

Download: PDF (0 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  

An unsupervised learning approach for content based image retrieval system is presented, which combines the low-level vision feature and the high-level semantics using the memorized SVM relevance feedback. The proposed approach fully explores the similarities among images in database by using the improved dominant set clustering to optimize the “relevance” feedback results from SVM. The experimental results show that the proposed method can be convergent to user's retrieval concept rapidly, and it has the superior precision and total relevance feedback times in image retrieval system.

Key wordsDominant Set Clustering (DSC)      Support Vector Machine (SVM)      Content Based Image Retrieval (CBIR)     
Received: 13 September 2007     
ZTFLH: TP391  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
WANG Man
PENG Guo-Hua
YE Zheng-Lin
ZHAO Cong
WANG Shu-Xun
Cite this article:   
WANG Man,PENG Guo-Hua,YE Zheng-Lin等. Image Retrieval Based on Dominant Set Clustering and Support Vector Machine[J]. , 2008, 21(5): 689-694.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2008/V21/I5/689
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn